Uniform 4-polytope

Last updated
Schlegel diagram for the truncated 120-cell with tetrahedral cells visible Schlegel half-solid truncated 120-cell.png
Schlegel diagram for the truncated 120-cell with tetrahedral cells visible
Orthographic projection of the truncated 120-cell, in the H3 Coxeter plane (D10 symmetry). Only vertices and edges are drawn. 120-cell t01 H3.svg
Orthographic projection of the truncated 120-cell, in the H3 Coxeter plane (D10 symmetry). Only vertices and edges are drawn.

In geometry, a uniform 4-polytope (or uniform polychoron) [1] is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

Contents

There are 47 non-prismatic convex uniform 4-polytopes. There are two infinite sets of convex prismatic forms, along with 17 cases arising as prisms of the convex uniform polyhedra. There are also an unknown number of non-convex star forms.

History of discovery

Regular 4-polytopes

Regular 4-polytopes are a subset of the uniform 4-polytopes, which satisfy additional requirements. Regular 4-polytopes can be expressed with Schläfli symbol {p,q,r} have cells of type {p,q}, faces of type {p}, edge figures {r}, and vertex figures {q,r}.

The existence of a regular 4-polytope {p,q,r} is constrained by the existence of the regular polyhedra {p,q} which becomes cells, and {q,r} which becomes the vertex figure.

Existence as a finite 4-polytope is dependent upon an inequality: [15]

The 16 regular 4-polytopes, with the property that all cells, faces, edges, and vertices are congruent:

Convex uniform 4-polytopes

Symmetry of uniform 4-polytopes in four dimensions

Orthogonal subgroups
The 24 mirrors of F4 can be decomposed into 2 orthogonal D4 groups:
  1. CDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node c3.pngCDel 3.pngCDel node c4.png = CDel node c3.pngCDel branch3 c3.pngCDel splitsplit2.pngCDel node c4.png (12 mirrors)
  2. CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png = CDel node c1.pngCDel splitsplit1.pngCDel branch3 c2.pngCDel node c2.png (12 mirrors)
The 10 mirrors of B3×A1 can be decomposed into orthogonal groups, 4A1 and D3:
  1. CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 2.pngCDel node c4.png = CDel node c1.pngCDel 2.pngCDel nodeab c1.pngCDel 2.pngCDel node c4.png (3+1 mirrors)
  2. CDel node h0.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 2.pngCDel node h0.png = CDel nodeab c2.pngCDel split2.pngCDel node c3.png (6 mirrors)

There are 5 fundamental mirror symmetry point group families in 4-dimensions: A4 = CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, B4 = CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, D4 = CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, F4 = CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, H4 = CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png. [7] There are also 3 prismatic groups A3A1 = CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png, B3A1 = CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png, H3A1 = CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png, and duoprismatic groups: I2(p)×I2(q) = CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.png. Each group defined by a Goursat tetrahedron fundamental domain bounded by mirror planes.

Each reflective uniform 4-polytope can be constructed in one or more reflective point group in 4 dimensions by a Wythoff construction, represented by rings around permutations of nodes in a Coxeter diagram. Mirror hyperplanes can be grouped, as seen by colored nodes, separated by even-branches. Symmetry groups of the form [a,b,a], have an extended symmetry, [[a,b,a]], doubling the symmetry order. This includes [3,3,3], [3,4,3], and [p,2,p]. Uniform polytopes in these group with symmetric rings contain this extended symmetry.

If all mirrors of a given color are unringed (inactive) in a given uniform polytope, it will have a lower symmetry construction by removing all of the inactive mirrors. If all the nodes of a given color are ringed (active), an alternation operation can generate a new 4-polytope with chiral symmetry, shown as "empty" circled nodes", but the geometry is not generally adjustable to create uniform solutions.

Weyl
group
Conway
Quaternion
Abstract
structure
Order Coxeter
diagram
Coxeter
notation
Commutator
subgroup
Coxeter
number

(h)
Mirrors
m=2h
Irreducible
A4+1/60[I×I].21 S5 120CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png[3,3,3][3,3,3]+510CDel node c1.png
D4±1/3[T×T].21/2.2S4192CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodeab c1.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c1.png[31,1,1][31,1,1]+612CDel node c1.png
B4±1/6[O×O].22S4 = S2≀S4384CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png[4,3,3]84CDel node c2.png12CDel node c1.png
F4±1/2[O×O].233.2S41152CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png[3,4,3][3+,4,3+]1212CDel node c2.png12CDel node c1.png
H4±[I×I].22.(A5×A5).214400CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png[5,3,3][5,3,3]+3060CDel node c1.png
Prismatic groups
A3A1+1/24[O×O].23S4×D148CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.png[3,3,2] = [3,3]×[ ][3,3]+-6CDel node c1.png1CDel node c3.png
B3A1±1/24[O×O].2S4×D196CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.png[4,3,2] = [4,3]×[ ]-3CDel node c2.png6CDel node c1.png1CDel node c3.png
H3A1±1/60[I×I].2A5×D1240CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.png[5,3,2] = [5,3]×[ ][5,3]+-15CDel node c1.png1CDel node c3.png
Duoprismatic groups (Use 2p,2q for even integers)
I2(p)I2(q)±1/2[D2p×D2q]Dp×Dq4pqCDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.pngCDel node c1.pngCDel p.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel q.pngCDel node c3.png[p,2,q] = [p]×[q][p+,2,q+]-pCDel node c1.pngqCDel node c3.png
I2(2p)I2(q)±1/2[D4p×D2q]D2p×Dq8pqCDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.pngCDel node c2.pngCDel 2x.pngCDel p.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel q.pngCDel node c3.png[2p,2,q] = [2p]×[q]-pCDel node c2.pngpCDel node c1.pngqCDel node c3.png
I2(2p)I2(2q)±1/2[D4p×D4q]D2p×D2q16pqCDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.pngCDel node c2.pngCDel 2x.pngCDel p.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 2x.pngCDel q.pngCDel node c4.png[2p,2,2q] = [2p]×[2q]-pCDel node c2.pngpCDel node c1.pngqCDel node c3.pngqCDel node c4.png

Enumeration

There are 64 convex uniform 4-polytopes, including the 6 regular convex 4-polytopes, and excluding the infinite sets of the duoprisms and the antiprismatic prisms.

These 64 uniform 4-polytopes are indexed below by George Olshevsky. Repeated symmetry forms are indexed in brackets.

In addition to the 64 above, there are 2 infinite prismatic sets that generate all of the remaining convex forms:

The A4 family

The 5-cell has diploid pentachoric [3,3,3] symmetry, [7] of order 120, isomorphic to the permutations of five elements, because all pairs of vertices are related in the same way.

Facets (cells) are given, grouped in their Coxeter diagram locations by removing specified nodes.

[3,3,3] uniform polytopes
#Name
Bowers name (and acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel 2.png
(5)
Pos. 2
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel 2.pngCDel 2.pngCDel node.png
(10)
Pos. 1
CDel node.pngCDel 2.pngCDel 2.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
(10)
Pos. 0
CDel 2.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
(5)
CellsFacesEdgesVertices
1 5-cell
Pentachoron [7] (pen)
5-cell verf.svg CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3,3}
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
510105
2 rectified 5-cell
Rectified pentachoron (rap)
Rectified 5-cell verf.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
r{3,3,3}
(3)
Uniform polyhedron-43-t2.png
(3.3.3.3)
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
10303010
3 truncated 5-cell
Truncated pentachoron (tip)
Truncated 5-cell verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t{3,3,3}
(3)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
10304020
4 cantellated 5-cell
Small rhombated pentachoron (srip)
Cantellated 5-cell verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
rr{3,3,3}
(2)
Uniform polyhedron-33-t02.svg
(3.4.3.4)
(2)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
20809030
7 cantitruncated 5-cell
Great rhombated pentachoron (grip)
Cantitruncated 5-cell verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{3,3,3}
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
208012060
8 runcitruncated 5-cell
Prismatorhombated pentachoron (prip)
Runcitruncated 5-cell verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,3}
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t02.svg
(3.4.3.4)
3012015060
[[3,3,3]] uniform polytopes
#Name
Bowers name (and acronym)
Vertex
figure
Coxeter diagram
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.png
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3-0
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel 2.png
(10)
Pos. 1-2
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel 2.pngCDel 2.pngCDel node.png
(20)
AltCellsFacesEdgesVertices
5*runcinated 5-cell
Small prismatodecachoron (spid)
Runcinated 5-cell verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,3,3}
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
(6)
Triangular prism.png
(3.4.4)
30706020
6*bitruncated 5-cell
Decachoron (deca)
Bitruncated 5-cell verf.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
2t{3,3,3}
(4)
Uniform polyhedron-33-t01.png
(3.6.6)
10406030
9*omnitruncated 5-cell
Great prismatodecachoron (gippid)
Omnitruncated 5-cell verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,3,3}
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(2)
Hexagonal prism.png
(4.4.6)
30150240120
Nonuniform omnisnub 5-cell
Snub decachoron (snad)
Snub pentachoron (snip) [16]
Snub 5-cell verf.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{3,3,3}
Uniform polyhedron-33-s012.png (2)
(3.3.3.3.3)
Trigonal antiprism.png (2)
(3.3.3.3)
Uniform polyhedron-33-t0.png (4)
(3.3.3)
9030027060

The three uniform 4-polytopes forms marked with an asterisk, *, have the higher extended pentachoric symmetry, of order 240, [[3,3,3]] because the element corresponding to any element of the underlying 5-cell can be exchanged with one of those corresponding to an element of its dual. There is one small index subgroup [3,3,3]+, order 60, or its doubling [[3,3,3]]+, order 120, defining an omnisnub 5-cell which is listed for completeness, but is not uniform.

The B4 family

This family has diploid hexadecachoric symmetry, [7] [4,3,3], of order 24×16=384: 4!=24 permutations of the four axes, 24=16 for reflection in each axis. There are 3 small index subgroups, with the first two generate uniform 4-polytopes which are also repeated in other families, [1+,4,3,3], [4,(3,3)+], and [4,3,3]+, all order 192.

Tesseract truncations

#Name
(Bowers name and acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3
CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel 2.png
(8)
Pos. 2
CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 2.pngCDel 2.pngCDel node n3.png
(24)
Pos. 1
CDel node n0.pngCDel 2.pngCDel 2.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(32)
Pos. 0
CDel 2.pngCDel 2.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(16)
CellsFacesEdgesVertices
10 tesseract or 8-cell
Tesseract (tes)
8-cell verf.svg CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{4,3,3}
(4)
Uniform polyhedron-43-t0.png
(4.4.4)
8243216
11 Rectified tesseract (rit) Rectified 8-cell verf.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
r{4,3,3}
(3)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
24889632
13 Truncated tesseract (tat) Truncated 8-cell verf.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t{4,3,3}
(3)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
248812864
14 Cantellated tesseract
Small rhombated tesseract (srit)
Cantellated 8-cell verf.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
rr{4,3,3}
(2)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(2)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
5624828896
15 Runcinated tesseract
(also runcinated 16-cell)
Small disprismatotesseractihexadecachoron (sidpith)
Runcinated 8-cell verf.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{4,3,3}
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
(3)
Uniform polyhedron-43-t0.png
(4.4.4)
(3)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
8020819264
16 Bitruncated tesseract
(also bitruncated 16-cell)
Tesseractihexadecachoron (tah)
Bitruncated 8-cell verf.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
2t{4,3,3}
(2)
Uniform polyhedron-43-t12.png
(4.6.6)
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
2412019296
18 Cantitruncated tesseract
Great rhombated tesseract (grit)
Cantitruncated 8-cell verf.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{4,3,3}
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
56248384192
19 Runcitruncated tesseract
Prismatorhombated hexadecachoron (proh)
Runcitruncated 8-cell verf.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{4,3,3}
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
(2)
Octagonal prism.png
(4.4.8)
(1)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
80368480192
21 Omnitruncated tesseract
(also omnitruncated 16-cell)
Great disprismatotesseractihexadecachoron (gidpith)
Omnitruncated 8-cell verf.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,3,4}
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Octagonal prism.png
(4.4.8)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
80464768384
Related half tesseract, [1+,4,3,3] uniform 4-polytopes
#Name
(Bowers style acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3
CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel 2.png
(8)
Pos. 2
CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 2.pngCDel 2.pngCDel node n3.png
(24)
Pos. 1
CDel node n0.pngCDel 2.pngCDel 2.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(32)
Pos. 0
CDel 2.pngCDel 2.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(16)
AltCellsFacesEdgesVertices
12Half tesseract
Demitesseract
= 16-cell (hex)
16-cell verf.svg CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
h{4,3,3}={3,3,4}
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
1632248
[17] Cantic tesseract
= Truncated 16-cell (thex)
Truncated demitesseract verf.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
h2{4,3,3}=t{4,3,3}
(4)
Uniform polyhedron-33-t01.png
(6.6.3)
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
249612048
[11] Runcic tesseract
= Rectified tesseract (rit)
Cantellated demitesseract verf.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png
h3{4,3,3}=r{4,3,3}
(3)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
24889632
[16] Runcicantic tesseract
= Bitruncated tesseract (tah)
Cantitruncated demitesseract verf.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h2,3{4,3,3}=2t{4,3,3}
(2)
Uniform polyhedron-43-t12.png
(3.4.3.4)
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
2412019296
[11]= Rectified tesseract (rat) Cantellated demitesseract verf.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
h1{4,3,3}=r{4,3,3}
24889632
[16]= Bitruncated tesseract (tah) Cantitruncated demitesseract verf.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
h1,2{4,3,3}=2t{4,3,3}
2412019296
[23]= Rectified 24-cell (rico) Runcicantellated demitesseract verf.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png
h1,3{4,3,3}=rr{3,3,4}
4824028896
[24]= Truncated 24-cell (tico) Omnitruncated demitesseract verf.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h1,2,3{4,3,3}=tr{3,3,4}
48240384192
#Name
(Bowers style acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3
CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel 2.png
(8)
Pos. 2
CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 2.pngCDel 2.pngCDel node n3.png
(24)
Pos. 1
CDel node n0.pngCDel 2.pngCDel 2.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(32)
Pos. 0
CDel 2.pngCDel 2.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(16)
AltCellsFacesEdgesVertices
Nonuniform omnisnub tesseract
Snub tesseract (snet) [17]
(Or omnisnub 16-cell)
Snub tesseract verf.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{4,3,3}
(1)
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
(1)
Square antiprism.png
(3.3.3.4)
(1)
Trigonal antiprism.png
(3.3.3.3)
(1)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
272944864192

16-cell truncations

#Name (Bowers name and acronym) Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3
CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel 2.png
(8)
Pos. 2
CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 2.pngCDel 2.pngCDel node n3.png
(24)
Pos. 1
CDel node n0.pngCDel 2.pngCDel 2.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(32)
Pos. 0
CDel 2.pngCDel 2.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(16)
AltCellsFacesEdgesVertices
[12] 16-cell
Hexadecachoron [7] (hex)
16-cell verf.svg CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,3,4}
(8)
Uniform polyhedron-33-t0.png
(3.3.3)
1632248
[22]*Rectified 16-cell
(Same as 24-cell ) (ico)
Rectified 16-cell verf.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
r{3,3,4}
(2)
Uniform polyhedron-43-t2.png
(3.3.3.3)
(4)
Uniform polyhedron-43-t2.png
(3.3.3.3)
24969624
17 Truncated 16-cell
Truncated hexadecachoron (thex)
Truncated 16-cell verf.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t{3,3,4}
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
(4)
Uniform polyhedron-33-t01.png
(3.6.6)
249612048
[23]*Cantellated 16-cell
(Same as rectified 24-cell ) (rico)
Cantellated 16-cell verf.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
rr{3,3,4}
(1)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
(2)
Tetragonal prism.png
(4.4.4)
(2)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
4824028896
[15] Runcinated 16-cell
(also runcinated tesseract) (sidpith)
Runcinated 8-cell verf.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,3,4}
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
(3)
Tetragonal prism.png
(4.4.4)
(3)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
8020819264
[16] Bitruncated 16-cell
(also bitruncated tesseract) (tah)
Bitruncated 8-cell verf.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
2t{3,3,4}
(2)
Uniform polyhedron-43-t12.png
(4.6.6)
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
2412019296
[24]*Cantitruncated 16-cell
(Same as truncated 24-cell ) (tico)
Cantitruncated 16-cell verf.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
tr{3,3,4}
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
(1)
Tetragonal prism.png
(4.4.4)
(2)
Uniform polyhedron-43-t12.png
(4.6.6)
48240384192
20 Runcitruncated 16-cell
Prismatorhombated tesseract (prit)
Runcitruncated 16-cell verf.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,4}
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(1)
Tetragonal prism.png
(4.4.4)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
80368480192
[21] Omnitruncated 16-cell
(also omnitruncated tesseract) (gidpith)
Omnitruncated 8-cell verf.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,3,4}
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Octagonal prism.png
(4.4.8)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
80464768384
[31]alternated cantitruncated 16-cell
(Same as the snub 24-cell) (sadi)
Snub 24-cell verf.png CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,3,4}
(1)
Uniform polyhedron-43-h01.svg
(3.3.3.3.3)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(2)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
14448043296
NonuniformRuncic snub rectified 16-cell
Pyritosnub tesseract (pysnet)
Runcic snub rectified 16-cell verf.png CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
sr3{3,3,4}
(1)
Rhombicuboctahedron uniform edge coloring.png
(3.4.4.4)
(2)
Triangular prism.png
(3.4.4)
(1)
Tetragonal prism.png
(4.4.4)
(1)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(2)
Triangular prism.png
(3.4.4)
176656672192
(*) Just as rectifying the tetrahedron produces the octahedron, rectifying the 16-cell produces the 24-cell, the regular member of the following family.

The snub 24-cell is repeat to this family for completeness. It is an alternation of the cantitruncated 16-cell or truncated 24-cell, with the half symmetry group [(3,3)+,4]. The truncated octahedral cells become icosahedra. The cubes becomes tetrahedra, and 96 new tetrahedra are created in the gaps from the removed vertices.

The F4 family

This family has diploid icositetrachoric symmetry, [7] [3,4,3], of order 24×48=1152: the 48 symmetries of the octahedron for each of the 24 cells. There are 3 small index subgroups, with the first two isomorphic pairs generating uniform 4-polytopes which are also repeated in other families, [3+,4,3], [3,4,3+], and [3,4,3]+, all order 576.

[3,4,3] uniform 4-polytopes
#Name Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3
CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel 2.png
(24)
Pos. 2
CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 2.pngCDel 2.pngCDel node n3.png
(96)
Pos. 1
CDel node n0.pngCDel 2.pngCDel 2.pngCDel 2.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(96)
Pos. 0
CDel 2.pngCDel 2.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(24)
CellsFacesEdgesVertices
22 24-cell
(Same as rectified 16-cell)
Icositetrachoron [7] (ico)
24 cell verf.svg CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
{3,4,3}
(6)
Uniform polyhedron-43-t2.png
(3.3.3.3)
24969624
23 rectified 24-cell
(Same as cantellated 16-cell)
Rectified icositetrachoron (rico)
Rectified 24-cell verf.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
r{3,4,3}
(3)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
(2)
Uniform polyhedron-43-t0.png
(4.4.4)
4824028896
24 truncated 24-cell
(Same as cantitruncated 16-cell)
Truncated icositetrachoron (tico)
Truncated 24-cell verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
t{3,4,3}
(3)
Uniform polyhedron-43-t12.png
(4.6.6)
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
48240384192
25 cantellated 24-cell
Small rhombated icositetrachoron (srico)
Cantellated 24-cell verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
rr{3,4,3}
(2)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(2)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
144720864288
28 cantitruncated 24-cell
Great rhombated icositetrachoron (grico)
Cantitruncated 24-cell verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{3,4,3}
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
1447201152576
29 runcitruncated 24-cell
Prismatorhombated icositetrachoron (prico)
Runcitruncated 24-cell verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{3,4,3}
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
24011041440576
[3+,4,3] uniform 4-polytopes
#Name Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3
CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel 2.png
(24)
Pos. 2
CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 2.pngCDel 2.pngCDel node n3.png
(96)
Pos. 1
CDel node n0.pngCDel 2.pngCDel 2.pngCDel 2.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(96)
Pos. 0
CDel 2.pngCDel 2.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(24)
AltCellsFacesEdgesVertices
31snub 24-cell
Snub disicositetrachoron (sadi)
Snub 24-cell verf.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
s{3,4,3}
(3)
Uniform polyhedron-43-h01.svg
(3.3.3.3.3)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
14448043296
Nonuniform runcic snub 24-cell
Prismatorhombisnub icositetrachoron (prissi)
Runcic snub 24-cell verf.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
s3{3,4,3}
(1)
Uniform polyhedron-43-h01.svg
(3.3.3.3.3)
(2)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(3)
Triangular cupola.png
Tricup
2409601008288
[25]cantic snub 24-cell
(Same as cantellated 24-cell) (srico)
Cantic snub 24-cell verf.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
s2{3,4,3}
(2)
Rhombicuboctahedron uniform edge coloring.png
(3.4.4.4)
(1)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
(2)
Triangular prism.png
(3.4.4)
144720864288
[29]runcicantic snub 24-cell
(Same as runcitruncated 24-cell) (prico)
Runcicantic snub 24-cell verf.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
s2,3{3,4,3}
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
(1)
Triangular prism.png
(3.4.4)
(1)
Rhombicuboctahedron uniform edge coloring.png
(3.4.4.4)
(2)
Hexagonal prism.png
(4.4.6)
24011041440576
(†) The snub 24-cell here, despite its common name, is not analogous to the snub cube; rather, it is derived by an alternation of the truncated 24-cell. Its symmetry number is only 576, (the ionic diminished icositetrachoric group, [3+,4,3]).

Like the 5-cell, the 24-cell is self-dual, and so the following three forms have twice as many symmetries, bringing their total to 2304 (extended icositetrachoric symmetry [[3,4,3]]).

[[3,4,3]] uniform 4-polytopes
#Name Vertex
figure
Coxeter diagram
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c1.png
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3-0
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel 2.png
CDel 2.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
(48)
Pos. 2-1
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel 2.pngCDel node.png
CDel node.pngCDel 2.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
(192)
CellsFacesEdgesVertices
26 runcinated 24-cell
Small prismatotetracontoctachoron (spic)
Runcinated 24-cell verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,4,3}
(2)
Uniform polyhedron-43-t2.png
(3.3.3.3)
(6)
Triangular prism.png
(3.4.4)
240672576144
27 bitruncated 24-cell
Tetracontoctachoron (cont)
Bitruncated 24-cell verf.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
2t{3,4,3}
(4)
Uniform polyhedron-43-t01.png
(3.8.8)
48336576288
30 omnitruncated 24-cell
Great prismatotetracontoctachoron (gippic)
Omnitruncated 24-cell verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,4,3}
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
(2)
Hexagonal prism.png
(4.4.6)
240139223041152
[[3,4,3]]+ isogonal 4-polytope
#Name Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3-0
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel 2.png
CDel 2.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
(48)
Pos. 2-1
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel 2.pngCDel node.png
CDel node.pngCDel 2.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
(192)
AltCellsFacesEdgesVertices
Nonuniform omnisnub 24-cell
Snub tetracontoctachoron (snoc)
Snub icositetrachoron (sni) [18]
Full snub 24-cell verf.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{3,4,3}
(2)
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
(2)
Trigonal antiprism.png
(3.3.3.3)
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
81628322592576

The H4 family

This family has diploid hexacosichoric symmetry, [7] [5,3,3], of order 120×120=24×600=14400: 120 for each of the 120 dodecahedra, or 24 for each of the 600 tetrahedra. There is one small index subgroups [5,3,3]+, all order 7200.

120-cell truncations

#Name
(Bowers name and acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by locationElement counts
Pos. 3
CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.png
(120)
Pos. 2
CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 2.pngCDel 2.pngCDel node n3.png
(720)
Pos. 1
CDel node n0.pngCDel 2.pngCDel 2.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(1200)
Pos. 0
CDel 2.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
(600)
AltCellsFacesEdgesVertices
32 120-cell
(hecatonicosachoron or dodecacontachoron) [7]
Hecatonicosachoron (hi)
120-cell verf.svg CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{5,3,3}
(4)
Uniform polyhedron-53-t0.png
(5.5.5)
1207201200600
33 rectified 120-cell
Rectified hecatonicosachoron (rahi)
Rectified 120-cell verf.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
r{5,3,3}
(3)
Uniform polyhedron-53-t1.png
(3.5.3.5)
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
720312036001200
36 truncated 120-cell
Truncated hecatonicosachoron (thi)
Truncated 120-cell verf.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t{5,3,3}
(3)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
720312048002400
37 cantellated 120-cell
Small rhombated hecatonicosachoron (srahi)
Cantellated 120-cell verf.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
rr{5,3,3}
(2)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(2)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
19209120108003600
38 runcinated 120-cell
(also runcinated 600-cell)
Small disprismatohexacosihecatonicosachoron (sidpixhi)
Runcinated 120-cell verf.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{5,3,3}
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
(3)
Pentagonal prism.png
(4.4.5)
(3)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
2640744072002400
39 bitruncated 120-cell
(also bitruncated 600-cell)
Hexacosihecatonicosachoron (xhi)
Bitruncated 120-cell verf.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
2t{5,3,3}
(2)
Uniform polyhedron-53-t12.png
(5.6.6)
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
720432072003600
42 cantitruncated 120-cell
Great rhombated hecatonicosachoron (grahi)
Cantitruncated 120-cell verf.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{5,3,3}
(2)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
19209120144007200
43 runcitruncated 120-cell
Prismatorhombated hexacosichoron (prix)
Runcitruncated 120-cell verf.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{5,3,3}
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(2)
Decagonal prism.png
(4.4.10)
(1)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
264013440180007200
46 omnitruncated 120-cell
(also omnitruncated 600-cell)
Great disprismatohexacosihecatonicosachoron (gidpixhi)
Omnitruncated 120-cell verf.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{5,3,3}
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Decagonal prism.png
(4.4.10)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
2640170402880014400
Nonuniform omnisnub 120-cell
Snub hecatonicosachoron (snixhi) [19]
(Same as the omnisnub 600-cell)
Snub 120-cell verf.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{5,3,3}
Uniform polyhedron-53-s012.png (1)
(3.3.3.3.5)
Pentagonal antiprism.png (1)
(3.3.3.5)
Trigonal antiprism.png (1)
(3.3.3.3)
Uniform polyhedron-33-s012.png (1)
(3.3.3.3.3)
Uniform polyhedron-33-t0.png (4)
(3.3.3)
984035040324007200

600-cell truncations

#Name
(Bowers style acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
SymmetryCell counts by locationElement counts
Pos. 3
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
(120)
Pos. 2
CDel node.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node.png
(720)
Pos. 1
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
(1200)
Pos. 0
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
(600)
CellsFacesEdgesVertices
35 600-cell
Hexacosichoron [7] (ex)
600-cell verf.svg CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,3,5}
[5,3,3]
order 14400
(20)
Uniform polyhedron-33-t0.png
(3.3.3)
6001200720120
[47] 20-diminished 600-cell
= Grand antiprism (gap)
Grand antiprism verf.png Nonwythoffian
construction
[[10,2+,10]]
order 400
Index 36
(2)
Pentagonal antiprism.png
(3.3.3.5)
(12)
Uniform polyhedron-33-t0.png
(3.3.3)
320720500100
[31] 24-diminished 600-cell
= Snub 24-cell (sadi)
Snub 24-cell verf.png Nonwythoffian
construction
[3+,4,3]
order 576
index 25
(3)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
(5)
Uniform polyhedron-33-t0.png
(3.3.3)
14448043296
Nonuniform bi-24-diminished 600-cell
Bi-icositetradiminished hexacosichoron (bidex)
Biicositetradiminished 600-cell vertex figure.png Nonwythoffian
construction
order 144
index 100
(6)
Tridiminished icosahedron.png
tdi
4819221672
34 rectified 600-cell
Rectified hexacosichoron (rox)
Rectified 600-cell verf.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
r{3,3,5}
[5,3,3](2)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
(5)
Uniform polyhedron-43-t2.png
(3.3.3.3)
72036003600720
Nonuniform 120-diminished rectified 600-cell
Swirlprismatodiminished rectified hexacosichoron (spidrox)
Spidrox-vertex figure.png Nonwythoffian
construction
order 1200
index 12
(2)
Pentagonal antiprism.png
3.3.3.5
(2)
Pentagonal prism.png
4.4.5
(5)
Square pyramid.png
P4
84026402400600
41 truncated 600-cell
Truncated hexacosichoron (tex)
Truncated 600-cell verf.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t{3,3,5}
[5,3,3](1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
(5)
Uniform polyhedron-33-t01.png
(3.6.6)
720360043201440
40 cantellated 600-cell
Small rhombated hexacosichoron (srix)
Cantellated 600-cell verf.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{3,3,5}
[5,3,3](1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
(2)
Pentagonal prism.png
(4.4.5)
(1)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
14408640108003600
[38] runcinated 600-cell
(also runcinated 120-cell) (sidpixhi)
Runcinated 120-cell verf.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,3,5}
[5,3,3](1)
Uniform polyhedron-53-t0.png
(5.5.5)
(3)
Pentagonal prism.png
(4.4.5)
(3)
Triangular prism.png
(3.4.4)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
2640744072002400
[39] bitruncated 600-cell
(also bitruncated 120-cell) (xhi)
Bitruncated 120-cell verf.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
2t{3,3,5}
[5,3,3](2)
Uniform polyhedron-53-t12.png
(5.6.6)
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
720432072003600
45 cantitruncated 600-cell
Great rhombated hexacosichoron (grix)
Cantitruncated 600-cell verf.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{3,3,5}
[5,3,3](1)
Uniform polyhedron-53-t12.png
(5.6.6)
(1)
Pentagonal prism.png
(4.4.5)
(2)
Uniform polyhedron-43-t12.png
(4.6.6)
14408640144007200
44 runcitruncated 600-cell
Prismatorhombated hecatonicosachoron (prahi)
Runcitruncated 600-cell verf.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,5}
[5,3,3](1)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(1)
Pentagonal prism.png
(4.4.5)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
264013440180007200
[46] omnitruncated 600-cell
(also omnitruncated 120-cell) (gidpixhi)
Omnitruncated 120-cell verf.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,3,5}
[5,3,3](1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Decagonal prism.png
(4.4.10)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
2640170402880014400

The D4 family

This demitesseract family, [31,1,1], introduces no new uniform 4-polytopes, but it is worthy to repeat these alternative constructions. This family has order 12×16=192: 4!/2=12 permutations of the four axes, half as alternated, 24=16 for reflection in each axis. There is one small index subgroups that generating uniform 4-polytopes, [31,1,1]+, order 96.

[31,1,1] uniform 4-polytopes
#Name (Bowers style acronym) Vertex
figure
Coxeter diagram
CD B4 nodes.png
CDel nodes 10ru.pngCDel split2.pngCDel node n2.pngCDel 3.pngCDel node n3.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
CDel nodes 10ru.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.png
Cell counts by locationElement counts
Pos. 0
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
(8)
Pos. 2
CDel nodes.pngCDel 2.pngCDel node.png
(24)
Pos. 1
CDel nodes.pngCDel split2.pngCDel node.png
(8)
Pos. 3
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
(8)
Pos. Alt
(96)
3210
[12]demitesseract
half tesseract
(Same as 16-cell ) (hex)
16-cell verf.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
h{4,3,3}
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
1632248
[17]cantic tesseract
(Same as truncated 16-cell ) (thex)
Truncated demitesseract verf.png CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
h2{4,3,3}
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
249612048
[11]runcic tesseract
(Same as rectified tesseract ) (rit)
Cantellated demitesseract verf.png CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
h3{4,3,3}
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(3)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
24889632
[16]runcicantic tesseract
(Same as bitruncated tesseract ) (tah)
Cantitruncated demitesseract verf.png CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h2,3{4,3,3}
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(2)
Uniform polyhedron-43-t12.png
(4.6.6)
24969624

When the 3 bifurcated branch nodes are identically ringed, the symmetry can be increased by 6, as [3[31,1,1]] = [3,4,3], and thus these polytopes are repeated from the 24-cell family.

[3[31,1,1]] uniform 4-polytopes
#Name (Bowers style acronym) Vertex
figure
Coxeter diagram
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel 3.pngCDel node c1.png = CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.png
CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node c2.pngCDel splitsplit1.pngCDel branch3 c1.pngCDel node c1.png
Cell counts by locationElement counts
Pos. 0,1,3
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
(24)
Pos. 2
CDel nodes.pngCDel 2.pngCDel node.png
(24)
Pos. Alt
(96)
3210
[22]rectified 16-cell
(Same as 24-cell ) (ico)
Rectified demitesseract verf.png CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png
{31,1,1} = r{3,3,4} = {3,4,3}
(6)
Uniform polyhedron-43-t2.png
(3.3.3.3)
4824028896
[23]cantellated 16-cell
(Same as rectified 24-cell ) (rico)
Runcicantellated demitesseract verf.png CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
r{31,1,1} = rr{3,3,4} = r{3,4,3}
(3)
Uniform polyhedron-43-t1.svg
(3.4.3.4)
(2)
Uniform polyhedron-43-t0.png
(4.4.4)
2412019296
[24]cantitruncated 16-cell
(Same as truncated 24-cell ) (tico)
Omnitruncated demitesseract verf.png CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
t{31,1,1} = tr{3,3,4} = t{3,4,3}
(3)
Uniform polyhedron-43-t12.png
(4.6.6)
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
48240384192
[31] snub 24-cell (sadi) Snub 24-cell verf.png CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h.pngCDel splitsplit1.pngCDel branch3 hh.pngCDel node h.png
s{31,1,1} = sr{3,3,4} = s{3,4,3}
(3)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
14448043296

Here again the snub 24-cell, with the symmetry group [31,1,1]+ this time, represents an alternated truncation of the truncated 24-cell creating 96 new tetrahedra at the position of the deleted vertices. In contrast to its appearance within former groups as partly snubbed 4-polytope, only within this symmetry group it has the full analogy to the Kepler snubs, i.e. the snub cube and the snub dodecahedron.

The grand antiprism

There is one non-Wythoffian uniform convex 4-polytope, known as the grand antiprism, consisting of 20 pentagonal antiprisms forming two perpendicular rings joined by 300 tetrahedra. It is loosely analogous to the three-dimensional antiprisms, which consist of two parallel polygons joined by a band of triangles. Unlike them, however, the grand antiprism is not a member of an infinite family of uniform polytopes.

Its symmetry is the ionic diminished Coxeter group, [[10,2+,10]], order 400.

#Name (Bowers style acronym) Picture Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cells by typeElement countsNet
CellsFacesEdgesVertices
47 grand antiprism (gap) Grand antiprism.png Grand antiprism verf.png No symbol300 Uniform polyhedron-33-t0.png
( 3.3.3 )
20 Pentagonal antiprism.png
( 3.3.3.5 )
32020 {5}
700 {3}
500100 Pentagonal double antiprismoid net.png

Prismatic uniform 4-polytopes

A prismatic polytope is a Cartesian product of two polytopes of lower dimension; familiar examples are the 3-dimensional prisms, which are products of a polygon and a line segment. The prismatic uniform 4-polytopes consist of two infinite families:

Convex polyhedral prisms

The most obvious family of prismatic 4-polytopes is the polyhedral prisms, i.e. products of a polyhedron with a line segment. The cells of such a 4-polytopes are two identical uniform polyhedra lying in parallel hyperplanes (the base cells) and a layer of prisms joining them (the lateral cells). This family includes prisms for the 75 nonprismatic uniform polyhedra (of which 18 are convex; one of these, the cube-prism, is listed above as the tesseract).[ citation needed ]

There are 18 convex polyhedral prisms created from 5 Platonic solids and 13 Archimedean solids as well as for the infinite families of three-dimensional prisms and antiprisms.[ citation needed ] The symmetry number of a polyhedral prism is twice that of the base polyhedron.

Tetrahedral prisms: A3 × A1

This prismatic tetrahedral symmetry is [3,3,2], order 48. There are two index 2 subgroups, [(3,3)+,2] and [3,3,2]+, but the second doesn't generate a uniform 4-polytope.

[3,3,2] uniform 4-polytopes
#Name (Bowers style acronym) Picture Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cells by typeElement countsNet
CellsFacesEdgesVertices
48 Tetrahedral prism (tepe) Tetrahedral prism.png Tetrahedral prism verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
{3,3}×{ }
t0,3{3,3,2}
2 Uniform polyhedron-33-t0.png
3.3.3
4 Triangular prism.png
3.4.4
68 {3}
6 {4}
168 Tetrahedron prism net.png
49 Truncated tetrahedral prism (tuttip) Truncated tetrahedral prism.png Truncated tetrahedral prism verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
t{3,3}×{ }
t0,1,3{3,3,2}
2 Uniform polyhedron-33-t01.png
3.6.6
4 Triangular prism.png
3.4.4
4 Hexagonal prism.png
4.4.6
108 {3}
18 {4}
8 {6}
4824 Truncated tetrahedral prism net.png
[[3,3],2] uniform 4-polytopes
#Name (Bowers style acronym) Picture Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cells by typeElement countsNet
CellsFacesEdgesVertices
[51]Rectified tetrahedral prism
(Same as octahedral prism) (ope)
Octahedral prism.png Tetratetrahedral prism verf.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
r{3,3}×{ }
t1,3{3,3,2}
2 Uniform polyhedron-43-t2.png
3.3.3.3
4 Triangular prism.png
3.4.4
616 {3}
12 {4}
3012 Octahedron prism net.png
[50]Cantellated tetrahedral prism
(Same as cuboctahedral prism) (cope)
Cuboctahedral prism.png Cuboctahedral prism verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
rr{3,3}×{ }
t0,2,3{3,3,2}
2 Uniform polyhedron-43-t1.svg
3.4.3.4
8 Triangular prism.png
3.4.4
6 Uniform polyhedron-43-t0.png
4.4.4
1616 {3}
36 {4}
6024 Cuboctahedral prism net.png
[54]Cantitruncated tetrahedral prism
(Same as truncated octahedral prism) (tope)
Truncated octahedral prism.png Truncated octahedral prism verf.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
tr{3,3}×{ }
t0,1,2,3{3,3,2}
2 Uniform polyhedron-43-t12.png
4.6.6
8 Hexagonal prism.png
6.4.4
6 Uniform polyhedron-43-t0.png
4.4.4
1648 {4}
16 {6}
9648 Truncated octahedral prism net.png
[59]Snub tetrahedral prism
(Same as icosahedral prism) (ipe)
Icosahedral prism.png Snub tetrahedral prism verf.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
sr{3,3}×{ }
2 Uniform polyhedron-53-t2.png
3.3.3.3.3
20 Triangular prism.png
3.4.4
2240 {3}
30 {4}
7224 Icosahedral prism net.png
Nonuniform omnisnub tetrahedral antiprism
Pyritohedral icosahedral antiprism (pikap)
Snub 332 verf.png CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
2 Uniform polyhedron-33-s012.png
3.3.3.3.3
8 Trigonal antiprism.png
3.3.3.3
6+24 Uniform polyhedron-33-t0.png
3.3.3
4016+96 {3}9624

Octahedral prisms: B3 × A1

This prismatic octahedral family symmetry is [4,3,2], order 96. There are 6 subgroups of index 2, order 48 that are expressed in alternated 4-polytopes below. Symmetries are [(4,3)+,2], [1+,4,3,2], [4,3,2+], [4,3+,2], [4,(3,2)+], and [4,3,2]+.

#Name (Bowers style acronym) Picture Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cells by typeElement countsNet
CellsFacesEdgesVertices
[10]Cubic prism
(Same as tesseract )
(Same as 4-4 duoprism) (tes)
Schlegel wireframe 8-cell.png Cubic prism verf.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
{4,3}×{ }
t0,3{4,3,2}
2 Uniform polyhedron-43-t0.png
4.4.4
6 Uniform polyhedron-43-t0.png
4.4.4
824 {4}3216 8-cell net.png
50 Cuboctahedral prism
(Same as cantellated tetrahedral prism) (cope)
Cuboctahedral prism.png Cuboctahedral prism verf.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
r{4,3}×{ }
t1,3{4,3,2}
2 Uniform polyhedron-43-t1.svg
3.4.3.4
8 Triangular prism.png
3.4.4
6 Uniform polyhedron-43-t0.png
4.4.4
1616 {3}
36 {4}
6024 Cuboctahedral prism net.png
51 Octahedral prism
(Same as rectified tetrahedral prism)
(Same as triangular antiprismatic prism) (ope)
Octahedral prism.png Tetratetrahedral prism verf.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
{3,4}×{ }
t2,3{4,3,2}
2 Uniform polyhedron-43-t2.png
3.3.3.3
8 Triangular prism.png
3.4.4
1016 {3}
12 {4}
3012 Octahedron prism net.png
52 Rhombicuboctahedral prism (sircope) Rhombicuboctahedral prism.png Rhombicuboctahedron prism verf.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
rr{4,3}×{ }
t0,2,3{4,3,2}
2 Uniform polyhedron-43-t02.png
3.4.4.4
8 Triangular prism.png
3.4.4
18 Uniform polyhedron-43-t0.png
4.4.4
2816 {3}
84 {4}
12048 Small rhombicuboctahedral prism net.png
53 Truncated cubic prism (ticcup) Truncated cubic prism.png Truncated cubic prism verf.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
t{4,3}×{ }
t0,1,3{4,3,2}
2 Uniform polyhedron-43-t01.png
3.8.8
8 Triangular prism.png
3.4.4
6 Octagonal prism.png
4.4.8
1616 {3}
36 {4}
12 {8}
9648 Truncated cubic prism net.png
54 Truncated octahedral prism
(Same as cantitruncated tetrahedral prism) (tope)
Truncated octahedral prism.png Truncated octahedral prism verf.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
t{3,4}×{ }
t1,2,3{4,3,2}
2 Uniform polyhedron-43-t12.png
4.6.6
6 Uniform polyhedron-43-t0.png
4.4.4
8 Hexagonal prism.png
4.4.6
1648 {4}
16 {6}
9648 Truncated octahedral prism net.png
55 Truncated cuboctahedral prism (gircope) Truncated cuboctahedral prism.png Truncated cuboctahedral prism verf.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
tr{4,3}×{ }
t0,1,2,3{4,3,2}
2 Uniform polyhedron-43-t012.png
4.6.8
12 Uniform polyhedron-43-t0.png
4.4.4
8 Hexagonal prism.png
4.4.6
6 Octagonal prism.png
4.4.8
2896 {4}
16 {6}
12 {8}
19296 Great rhombicuboctahedral prism net.png
56 Snub cubic prism (sniccup) Snub cubic prism.png Snub cubic prism verf.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
sr{4,3}×{ }
2 Snub hexahedron.png
3.3.3.3.4
32 Triangular prism.png
3.4.4
6 Uniform polyhedron-43-t0.png
4.4.4
4064 {3}
72 {4}
14448 Snub cuboctahedral prism net.png
[48] Tetrahedral prism (tepe) Tetrahedral prism.png Tetrahedral prism verf.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
h{4,3}×{ }
2 Uniform polyhedron-33-t0.png
3.3.3
4 Triangular prism.png
3.4.4
68 {3}
6 {4}
168 Tetrahedron prism net.png
[49] Truncated tetrahedral prism (tuttip) Truncated tetrahedral prism.png Truncated tetrahedral prism verf.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
h2{4,3}×{ }
2 Uniform polyhedron-33-t01.png
3.3.6
4 Triangular prism.png
3.4.4
4 Hexagonal prism.png
4.4.6
68 {3}
6 {4}
168 Truncated tetrahedral prism net.png
[50] Cuboctahedral prism (cope) Cuboctahedral prism.png Cuboctahedral prism verf.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
rr{3,3}×{ }
2 Uniform polyhedron-43-t1.svg
3.4.3.4
8 Triangular prism.png
3.4.4
6 Uniform polyhedron-43-t0.png
4.4.4
1616 {3}
36 {4}
6024 Cuboctahedral prism net.png
[52] Rhombicuboctahedral prism (sircope) Rhombicuboctahedral prism.png Rhombicuboctahedron prism verf.png CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
s2{3,4}×{ }
2 Rhombicuboctahedron uniform edge coloring.png
3.4.4.4
8 Triangular prism.png
3.4.4
18 Uniform polyhedron-43-t0.png
4.4.4
2816 {3}
84 {4}
12048 Small rhombicuboctahedral prism net.png
[54] Truncated octahedral prism (tope) Truncated octahedral prism.png Truncated octahedral prism verf.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
tr{3,3}×{ }
2 Uniform polyhedron-43-t12.png
4.6.6
6 Uniform polyhedron-43-t0.png
4.4.4
8 Hexagonal prism.png
4.4.6
1648 {4}
16 {6}
9648 Truncated octahedral prism net.png
[59] Icosahedral prism (ipe) Icosahedral prism.png Snub tetrahedral prism verf.png CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
s{3,4}×{ }
2 Uniform polyhedron-53-t2.png
3.3.3.3.3
20 Triangular prism.png
3.4.4
2240 {3}
30 {4}
7224 Icosahedral prism net.png
[12] 16-cell (hex) Schlegel wireframe 16-cell.png 16-cell verf.svg CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
s{2,4,3}
2+6+8 Uniform polyhedron-33-t0.png
3.3.3.3
1632 {3}248 16-cell net.png
Nonuniform Omnisnub tetrahedral antiprism
= Pyritohedral icosahedral antiprism (pikap)
Snub 332 verf.png CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png
sr{2,3,4}
2 Uniform polyhedron-53-t2.png
3.3.3.3.3
8 Trigonal antiprism.png
3.3.3.3
6+24 Uniform polyhedron-33-t0.png
3.3.3
4016+96 {3}9624
Nonuniform Edge-snub octahedral hosochoron
Pyritosnub alterprism (pysna)
Bialternatosnub octahedral hosochoron vertex figure.png CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png
sr3{2,3,4}
2 Rhombicuboctahedron uniform edge coloring.png
3.4.4.4
6 Cube rotorotational symmetry.png
4.4.4
8 Trigonal antiprism.png
3.3.3.3
24 Triangular prism.png
3.4.4
4016+48 {3}
12+12+24+24 {4}
14448
Nonuniform Omnisnub cubic antiprism
Snub cubic antiprism (sniccap)
Snub 432 verf.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png
2 Snub hexahedron.png
3.3.3.3.4
12+48 Uniform polyhedron-33-t0.png
3.3.3
8 Trigonal antiprism.png
3.3.3.3
6 Square antiprism.png
3.3.3.4
7616+192 {3}
12 {4}
19248
Nonuniform Runcic snub cubic hosochoron
Truncated tetrahedral alterprism (tuta)
Runcic snub cubic hosochoron.png Runcic snub 243 verf.png CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
s3{2,4,3}
2 Uniform polyhedron-33-t01.png
3.6.6
6 Uniform polyhedron-33-t0.png
3.3.3
8 Triangular cupola.png
triangular cupola
16526024 Truncated tetrahedral cupoliprism net.png

Icosahedral prisms: H3 × A1

This prismatic icosahedral symmetry is [5,3,2], order 240. There are two index 2 subgroups, [(5,3)+,2] and [5,3,2]+, but the second doesn't generate a uniform polychoron.

#Name (Bowers name and acronym) Picture Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cells by typeElement countsNet
CellsFacesEdgesVertices
57 Dodecahedral prism (dope) Dodecahedral prism.png Dodecahedral prism verf.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
{5,3}×{ }
t0,3{5,3,2}
2 Uniform polyhedron-53-t0.png
5.5.5
12 Pentagonal prism.png
4.4.5
1430 {4}
24 {5}
8040 Dodecahedral prism net.png
58 Icosidodecahedral prism (iddip) Icosidodecahedral prism.png Icosidodecahedral prism verf.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
r{5,3}×{ }
t1,3{5,3,2}
2 Uniform polyhedron-53-t1.png
3.5.3.5
20 Triangular prism.png
3.4.4
12 Pentagonal prism.png
4.4.5
3440 {3}
60 {4}
24 {5}
15060 Icosidodecahedral prism net.png
59 Icosahedral prism
(same as snub tetrahedral prism) (ipe)
Icosahedral prism.png Snub tetrahedral prism verf.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
{3,5}×{ }
t2,3{5,3,2}
2 Uniform polyhedron-53-t2.png
3.3.3.3.3
20 Triangular prism.png
3.4.4
2240 {3}
30 {4}
7224 Icosahedral prism net.png
60 Truncated dodecahedral prism (tiddip) Truncated dodecahedral prism.png Truncated dodecahedral prism verf.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
t{5,3}×{ }
t0,1,3{5,3,2}
2 Uniform polyhedron-53-t01.png
3.10.10
20 Triangular prism.png
3.4.4
12 Decagonal prism.png
4.4.10
3440 {3}
90 {4}
24 {10}
240120 Truncated dodecahedral prism net.png
61 Rhombicosidodecahedral prism (sriddip) Rhombicosidodecahedral prism.png Rhombicosidodecahedron prism verf.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
rr{5,3}×{ }
t0,2,3{5,3,2}
2 Uniform polyhedron-53-t02.png
3.4.5.4
20 Triangular prism.png
3.4.4
30 Uniform polyhedron-43-t0.png
4.4.4
12 Pentagonal prism.png
4.4.5
6440 {3}
180 {4}
24 {5}
300120 Small rhombicosidodecahedral prism net.png
62 Truncated icosahedral prism (tipe) Truncated icosahedral prism.png Truncated icosahedral prism verf.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
t{3,5}×{ }
t1,2,3{5,3,2}
2 Uniform polyhedron-53-t12.png
5.6.6
12 Pentagonal prism.png
4.4.5
20 Hexagonal prism.png
4.4.6
3490 {4}
24 {5}
40 {6}
240120 Truncated icosahedral prism net.png
63 Truncated icosidodecahedral prism (griddip) Truncated icosidodecahedral prism.png Truncated icosidodecahedral prism verf.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
tr{5,3}×{ }
t0,1,2,3{5,3,2}
2 Uniform polyhedron-53-t012.png
4.6.10
30 Uniform polyhedron-43-t0.png
4.4.4
20 Hexagonal prism.png
4.4.6
12 Decagonal prism.png
4.4.10
64240 {4}
40 {6}
24 {10}
480240 Great rhombicosidodecahedral prism net.png
64 Snub dodecahedral prism (sniddip) Snub dodecahedral prism.png Snub dodecahedral prism verf.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
sr{5,3}×{ }
2 Snub dodecahedron ccw.png
3.3.3.3.5
80 Triangular prism.png
3.4.4
12 Pentagonal prism.png
4.4.5
94160 {3}
150 {4}
24 {5}
360120 Snub icosidodecahedral prism net.png
Nonuniform Omnisnub dodecahedral antiprism
Snub dodecahedral antiprism (sniddap)
Snub 532 verf.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png
2 Snub dodecahedron ccw.png
3.3.3.3.5
30+120 Uniform polyhedron-33-t0.png
3.3.3
20 Uniform polyhedron-43-t2.png
3.3.3.3
12 Pentagonal antiprism.png
3.3.3.5
18420+240 {3}
24 {5}
220120

Duoprisms: [p] × [q]

The simplest of the duoprisms, the 3,3-duoprism, in Schlegel diagram, one of 6 triangular prism cells shown. 3-3 duoprism.png
The simplest of the duoprisms, the 3,3-duoprism, in Schlegel diagram, one of 6 triangular prism cells shown.

The second is the infinite family of uniform duoprisms, products of two regular polygons. A duoprism's Coxeter-Dynkin diagram is CDel node 1.pngCDel p.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel q.pngCDel node.png. Its vertex figure is a disphenoid tetrahedron, Pq-duoprism verf.png .

This family overlaps with the first: when one of the two "factor" polygons is a square, the product is equivalent to a hyperprism whose base is a three-dimensional prism. The symmetry number of a duoprism whose factors are a p-gon and a q-gon (a "p,q-duoprism") is 4pq if pq; if the factors are both p-gons, the symmetry number is 8p2. The tesseract can also be considered a 4,4-duoprism.

The extended f-vector of {p}×{q} is (p,p,1)*(q,q,1) = (pq,2pq,pq+p+q,p+q).

  • Cells: pq-gonal prisms, qp-gonal prisms
  • Faces: pq squares, pq-gons, qp-gons
  • Edges: 2pq
  • Vertices: pq

There is no uniform analogue in four dimensions to the infinite family of three-dimensional antiprisms.

Infinite set of p-q duoprism - CDel node 1.pngCDel p.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel q.pngCDel node.png - pq-gonal prisms, qp-gonal prisms:

NameCoxeter graphCellsImagesNet
3-3 duoprism (triddip)CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png3+3 triangular prisms 3-3 duoprism.png 3-3 duoprism net.png
3-4 duoprism (tisdip)CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png3 cubes
4 triangular prisms
3-4 duoprism.png 4-3 duoprism.png 4-3 duoprism net.png
4-4 duoprism (tes)
(same as tesseract)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png4+4 cubes 4-4 duoprism.png 8-cell net.png
3-5 duoprism (trapedip)CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 5.pngCDel node.png3 pentagonal prisms
5 triangular prisms
5-3 duoprism.png 3-5 duoprism.png 5-3 duoprism net.png
4-5 duoprism (squipdip)CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 5.pngCDel node.png4 pentagonal prisms
5 cubes
4-5 duoprism.png 5-4 duoprism.png 5-4 duoprism net.png
5-5 duoprism (pedip)CDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 5.pngCDel node.png5+5 pentagonal prisms 5-5 duoprism.png 5-5 duoprism net.png
3-6 duoprism (thiddip)CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png3 hexagonal prisms
6 triangular prisms
3-6 duoprism.png 6-3 duoprism.png 6-3 duoprism net.png
4-6 duoprism (shiddip)CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png4 hexagonal prisms
6 cubes
4-6 duoprism.png 6-4 duoprism.png 6-4 duoprism net.png
5-6 duoprism (phiddip)CDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png5 hexagonal prisms
6 pentagonal prisms
5-6 duoprism.png 6-5 duoprism.png 6-5 duoprism net.png
6-6 duoprism (hiddip)CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png6+6 hexagonal prisms 6-6 duoprism.png 6-6 duoprism net.png
3-3 duoprism.png
3-3
3-4 duoprism.png
3-4
3-5 duoprism.png
3-5
3-6 duoprism.png
3-6
3-7 duoprism.png
3-7
3-8 duoprism.png
3-8
4-3 duoprism.png
4-3
4-4 duoprism.png
4-4
4-5 duoprism.png
4-5
4-6 duoprism.png
4-6
4-7 duoprism.png
4-7
4-8 duoprism.png
4-8
5-3 duoprism.png
5-3
5-4 duoprism.png
5-4
5-5 duoprism.png
5-5
5-6 duoprism.png
5-6
5-7 duoprism.png
5-7
5-8 duoprism.png
5-8
6-3 duoprism.png
6-3
6-4 duoprism.png
6-4
6-5 duoprism.png
6-5
6-6 duoprism.png
6-6
6-7 duoprism.png
6-7
6-8 duoprism.png
6-8
7-3 duoprism.png
7-3
7-4 duoprism.png
7-4
7-5 duoprism.png
7-5
7-6 duoprism.png
7-6
7-7 duoprism.png
7-7
7-8 duoprism.png
7-8
8-3 duoprism.png
8-3
8-4 duoprism.png
8-4
8-5 duoprism.png
8-5
8-6 duoprism.png
8-6
8-7 duoprism.png
8-7
8-8 duoprism.png
8-8

Alternations are possible. CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel q.pngCDel node h.png = CDel node h.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel q.pngCDel node.png gives the family of duoantiprisms, but they generally cannot be made uniform. p=q=2 is the only convex case that can be made uniform, giving the regular 16-cell. p=5, q=5/3 is the only nonconvex case that can be made uniform, giving the so-called great duoantiprism. CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel q.pngCDel node 1.png gives the p-2q-gonal prismantiprismoid (an edge-alternation of the 2p-4q duoprism), but this cannot be made uniform in any cases. [20]

Polygonal prismatic prisms: [p] × [ ] × [ ]

The infinite set of uniform prismatic prisms overlaps with the 4-p duoprisms: (p≥3) - CDel node 1.pngCDel p.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png - p cubes and 4 p-gonal prisms - (All are the same as 4-p duoprism) The second polytope in the series is a lower symmetry of the regular tesseract, {4}×{4}.

Convex p-gonal prismatic prisms
Name {3}×{4} {4}×{4} {5}×{4} {6}×{4} {7}×{4} {8}×{4} {p}×{4}
Coxeter
diagrams
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel p.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Image 3-4 duoprism.png
4-3 duoprism.png
4-4 duoprism.png 4-5 duoprism.png
5-4 duoprism.png
4-6 duoprism.png
6-4 duoprism.png
4-7 duoprism.png
7-4 duoprism.png
4-8 duoprism.png
8-4 duoprism.png
Cells 3 {4}×{} Hexahedron.png
4 {3}×{} Triangular prism.png
4 {4}×{} Hexahedron.png
4 {4}×{} Tetragonal prism.png
5 {4}×{} Hexahedron.png
4 {5}×{} Pentagonal prism.png
6 {4}×{} Hexahedron.png
4 {6}×{} Hexagonal prism.png
7 {4}×{} Hexahedron.png
4 {7}×{} Prism 7.png
8 {4}×{} Hexahedron.png
4 {8}×{} Octagonal prism.png
p {4}×{} Hexahedron.png
4 {p}×{}
Net 4-3 duoprism net.png 8-cell net.png 5-4 duoprism net.png 6-4 duoprism net.png 7-4 duoprism net.png 8-4 duoprism net.png

Polygonal antiprismatic prisms: [p] × [ ] × [ ]

The infinite sets of uniform antiprismatic prisms are constructed from two parallel uniform antiprisms): (p≥2) - CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png - 2 p-gonal antiprisms, connected by 2 p-gonal prisms and 2p triangular prisms.

Convex p-gonal antiprismatic prisms
Name s{2,2}×{} s{2,3}×{} s{2,4}×{} s{2,5}×{} s{2,6}×{} s{2,7}×{} s{2,8}×{} s{2,p}×{}
Coxeter
diagram
CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 10.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 5.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 12.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 14.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 7.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 16.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 2x.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
Image Digonal antiprismatic prism.png Triangular antiprismatic prism.png Square antiprismatic prism.png Pentagonal antiprismatic prism.png Hexagonal antiprismatic prism.png Heptagonal antiprismatic prism.png Octagonal antiprismatic prism.png 15-gonal antiprismatic prism.png
Vertex
figure
Tetrahedral prism verf.png Tetratetrahedral prism verf.png Square antiprismatic prism verf2.png Pentagonal antiprismatic prism verf.png Hexagonal antiprismatic prism verf.png Heptagonal antiprismatic prism verf.png Octagonal antiprismatic prism verf.png Uniform antiprismatic prism verf.png
Cells2 s{2,2}
(2) {2}×{}={4}
4 {3}×{}
2 s{2,3}
2 {3}×{}
6 {3}×{}
2 s{2,4}
2 {4}×{}
8 {3}×{}
2 s{2,5}
2 {5}×{}
10 {3}×{}
2 s{2,6}
2 {6}×{}
12 {3}×{}
2 s{2,7}
2 {7}×{}
14 {3}×{}
2 s{2,8}
2 {8}×{}
16 {3}×{}
2 s{2,p}
2 {p}×{}
2p {3}×{}
Net Tetrahedron prism net.png Octahedron prism net.png 4-antiprismatic prism net.png 5-antiprismatic prism net.png 6-antiprismatic prism net.png 7-antiprismatic prism net.png 8-antiprismatic prism net.png 15-gonal antiprismatic prism verf.png

A p-gonal antiprismatic prism has 4p triangle, 4p square and 4 p-gon faces. It has 10p edges, and 4p vertices.

Nonuniform alternations

Like the 3-dimensional snub cube, , an alternation removes half the vertices, in two chiral sets of vertices from the ringed form , however the uniform solution requires the vertex positions be adjusted for equal lengths. In four dimensions, this adjustment is only possible for 2 alternated figures, while the rest only exist as nonequilateral alternated figures. Snubcubes in grCO.svg
Like the 3-dimensional snub cube, CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png, an alternation removes half the vertices, in two chiral sets of vertices from the ringed form CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png, however the uniform solution requires the vertex positions be adjusted for equal lengths. In four dimensions, this adjustment is only possible for 2 alternated figures, while the rest only exist as nonequilateral alternated figures.

Coxeter showed only two uniform solutions for rank 4 Coxeter groups with all rings alternated (shown with empty circle nodes). The first is CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.png, s{21,1,1} which represented an index 24 subgroup (symmetry [2,2,2]+, order 8) form of the demitesseract, CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, h{4,3,3} (symmetry [1+,4,3,3] = [31,1,1], order 192). The second is CDel node h.pngCDel 3.pngCDel node h.pngCDel split1.pngCDel nodes hh.png, s{31,1,1}, which is an index 6 subgroup (symmetry [31,1,1]+, order 96) form of the snub 24-cell, CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, s{3,4,3}, (symmetry [3+,4,3], order 576).

Other alternations, such as CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png, as an alternation from the omnitruncated tesseract CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png, can not be made uniform as solving for equal edge lengths are in general overdetermined (there are six equations but only four variables). Such nonuniform alternated figures can be constructed as vertex-transitive 4-polytopes by the removal of one of two half sets of the vertices of the full ringed figure, but will have unequal edge lengths. Just like uniform alternations, they will have half of the symmetry of uniform figure, like [4,3,3]+, order 192, is the symmetry of the alternated omnitruncated tesseract. [21]

Wythoff constructions with alternations produce vertex-transitive figures that can be made equilateral, but not uniform because the alternated gaps (around the removed vertices) create cells that are not regular or semiregular. A proposed name for such figures is scaliform polytopes. [22] This category allows a subset of Johnson solids as cells, for example triangular cupola.

Each vertex configuration within a Johnson solid must exist within the vertex figure. For example, a square pyramid has two vertex configurations: 3.3.4 around the base, and 3.3.3.3 at the apex.

The nets and vertex figures of the four convex equilateral cases are given below, along with a list of cells around each vertex.

Four convex vertex-transitive equilateral 4-polytopes with nonuniform cells
Coxeter
diagram
s3{2,4,3}, CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngs3{3,4,3}, CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngOthers
Relation24 of 48 vertices of
rhombicuboctahedral prism
288 of 576 vertices of
runcitruncated 24-cell
72 of 120 vertices
of 600-cell
600 of 720 vertices
of rectified 600-cell
Projection Tutcup-ortho.png 24-cell s3 B3.png Bidex ortho 12-gon.png Spidrox-square pyramid ring.png
Two rings of pyramids
Net Truncated tetrahedral cupoliprism net.png
runcic snub cubic hosochoron [23] [24]
Prismatorhombisnub icositetrachoron net.png
runcic snub 24-cell [25] [26]
Biicositetradiminished hexacosichoron net.png [27] [28] [29] Swirlprismatodiminished rectified hexacosichoron net.png [30] [31]
Cells Triangular cupola.png Tetrahedron.png Truncated tetrahedron.png Triangular cupola.png Truncated tetrahedron.png Icosahedron.png Triangular prism.png Tridiminished icosahedron.png Square pyramid.png Pentagonal prism.png Pentagonal antiprism.png
Vertex
figure
Runcic snub 243 verf.png
(1) 3.4.3.4: triangular cupola
(2) 3.4.6: triangular cupola
(1) 3.3.3: tetrahedron
(1) 3.6.6: truncated tetrahedron
Runcic snub 24-cell verf.png
(1) 3.4.3.4: triangular cupola
(2) 3.4.6: triangular cupola
(2) 3.4.4: triangular prism
(1) 3.6.6: truncated tetrahedron
(1) 3.3.3.3.3: icosahedron
Biicositetradiminished 600-cell vertex figure.png
(2) 3.3.3.5: tridiminished icosahedron
(4) 3.5.5: tridiminished icosahedron
Spidrox-vertex figure.png
(1) 3.3.3.3: square pyramid
(4) 3.3.4: square pyramid
(2) 4.4.5: pentagonal prism
(2) 3.3.3.5 pentagonal antiprism

Geometric derivations for 46 nonprismatic Wythoffian uniform polychora

The 46 Wythoffian 4-polytopes include the six convex regular 4-polytopes. The other forty can be derived from the regular polychora by geometric operations which preserve most or all of their symmetries, and therefore may be classified by the symmetry groups that they have in common.

Polychoron truncation chart.png
Summary chart of truncation operations
Uniform honeycomb truncations.png
Example locations of kaleidoscopic generator point on fundamental domain.

The geometric operations that derive the 40 uniform 4-polytopes from the regular 4-polytopes are truncating operations. A 4-polytope may be truncated at the vertices, edges or faces, leading to addition of cells corresponding to those elements, as shown in the columns of the tables below.

The Coxeter-Dynkin diagram shows the four mirrors of the Wythoffian kaleidoscope as nodes, and the edges between the nodes are labeled by an integer showing the angle between the mirrors (π/n radians or 180/n degrees). Circled nodes show which mirrors are active for each form; a mirror is active with respect to a vertex that does not lie on it.

Operation Schläfli symbol Symmetry Coxeter diagram Description
Parentt0{p,q,r}[p,q,r]CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngOriginal regular form {p,q,r}
Rectification t1{p,q,r}CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngTruncation operation applied until the original edges are degenerated into points.
Birectification
(Rectified dual)
t2{p,q,r}CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngFace are fully truncated to points. Same as rectified dual.
Trirectification
(dual)
t3{p,q,r}CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngCells are truncated to points. Regular dual {r,q,p}
Truncation t0,1{p,q,r}CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngEach vertex is cut off so that the middle of each original edge remains. Where the vertex was, there appears a new cell, the parent's vertex figure. Each original cell is likewise truncated.
Bitruncation t1,2{p,q,r}CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngA truncation between a rectified form and the dual rectified form.
Tritruncationt2,3{p,q,r}CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngTruncated dual {r,q,p}.
Cantellation t0,2{p,q,r}CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngA truncation applied to edges and vertices and defines a progression between the regular and dual rectified form.
Bicantellationt1,3{p,q,r}CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngCantellated dual {r,q,p}.
Runcination
(or expansion)
t0,3{p,q,r}CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngA truncation applied to the cells, faces and edges; defines a progression between a regular form and the dual.
Cantitruncationt0,1,2{p,q,r}CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngBoth the cantellation and truncation operations applied together.
Bicantitruncationt1,2,3{p,q,r}CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngCantitruncated dual {r,q,p}.
Runcitruncationt0,1,3{p,q,r}CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngBoth the runcination and truncation operations applied together.
Runcicantellationt0,2,3{p,q,r}CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngRuncitruncated dual {r,q,p}.
Omnitruncation
(runcicantitruncation)
t0,1,2,3{p,q,r}CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngApplication of all three operators.
Halfh{2p,3,q}[1+,2p,3,q]
=[(3,p,3),q]
CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node.png Alternation of CDel node 1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node.png, same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node.png
Cantich2{2p,3,q}CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node.pngSame as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node.png
Runcich3{2p,3,q}CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node 1.pngSame as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node 1.png
Runcicantich2,3{2p,3,q}CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node 1.pngSame as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node 1.png
Quarterq{2p,3,2q}[1+,2p,3,2q,1+]CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node h1.pngSame as CDel labelp.pngCDel branch 10r.pngCDel splitcross.pngCDel branch 01l.pngCDel labelq.png
Snubs{p,2q,r}[p+,2q,r]CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngAlternated truncation
Cantic snubs2{p,2q,r}CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngCantellated alternated truncation
Runcic snubs3{p,2q,r}CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngRuncinated alternated truncation
Runcicantic snubs2,3{p,2q,r}CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngRuncicantellated alternated truncation
Snub rectifiedsr{p,q,2r}[(p,q)+,2r]CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel 2x.pngCDel r.pngCDel node.pngAlternated truncated rectification
ht0,3{2p,q,2r}[(2p,q,2r,2+)]CDel node h.pngCDel 2x.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel 2x.pngCDel r.pngCDel node h.pngAlternated runcination
Bisnub2s{2p,q,2r}[2p,q+,2r]CDel node.pngCDel 2x.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel 2x.pngCDel r.pngCDel node.pngAlternated bitruncation
Omnisnubht0,1,2,3{p,q,r}[p,q,r]+CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel r.pngCDel node h.pngAlternated omnitruncation

See also convex uniform honeycombs, some of which illustrate these operations as applied to the regular cubic honeycomb.

If two polytopes are duals of each other (such as the tesseract and 16-cell, or the 120-cell and 600-cell), then bitruncating, runcinating or omnitruncating either produces the same figure as the same operation to the other. Thus where only the participle appears in the table it should be understood to apply to either parent.

Summary of constructions by extended symmetry

The 46 uniform polychora constructed from the A4, B4, F4, H4 symmetry are given in this table by their full extended symmetry and Coxeter diagrams. The D4 symmetry is also included, though it only creates duplicates. Alternations are grouped by their chiral symmetry. All alternations are given, although the snub 24-cell, with its 3 constructions from different families is the only one that is uniform. Counts in parentheses are either repeats or nonuniform. The Coxeter diagrams are given with subscript indices 1 through 46. The 3-3 and 4-4 duoprismatic family is included, the second for its relation to the B4 family.

Coxeter group Extended
symmetry
PolychoraChiral
extended
symmetry
Alternation honeycombs
[3,3,3]
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c4.png
(order 120)
6CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png(2) | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png(3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(4) | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(7) | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png(8)
[2+[3,3,3]]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.png
(order 240)
3CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(6) | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png(9)[2+[3,3,3]]+
(order 120)
(1)CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png(−)
[3,31,1]
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[3,31,1]
CDel node c3.pngCDel 3.pngCDel node c4.pngCDel split1.pngCDel nodeab c1-2.png
(order 192)
0(none)
[1[3,31,1]]=[4,3,3]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.png = CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node.png
(order 384)
(4)CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png(17) | CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png(11) | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png(16)
[3[31,1,1]]=[3,4,3]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png = CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
(order 1152)
(3)CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png(23) | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png(24)[3[3,31,1]]+
=[3,4,3]+
(order 576)
(1)CDel node h.pngCDel 3.pngCDel node h.pngCDel split1.pngCDel nodes hh.png(31) (= CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png(−)
[4,3,3]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3[1+,4,3,3]]=[3,4,3]
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.png = CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
(order 1152)
(3)CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(22) | CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png(23) | CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png(24)
[4,3,3]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c4.png
(order 384)
12CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png(10) | CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png(11) | CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png(12) | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png(13) | CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(14)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png(15) | CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(16) | CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png(17) | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(18) | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png(19)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png(20) | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png(21)
[1+,4,3,3]+
(order 96)
(2)CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png(12) (= CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png)
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png(31)
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png(−)
[4,3,3]+
(order 192)
(1)CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png(−)
[3,4,3]
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
[3,4,3]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 3.pngCDel node c4.png
(order 1152)
6CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png(23) | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png(24)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png(25) | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png(28) | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png(29)
[2+[3+,4,3+]]
(order 576)
1CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png(31)
[2+[3,4,3]]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c1.png
(order 2304)
3CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png(27) | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png(30)[2+[3,4,3]]+
(order 1152)
(1)CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png(−)
[5,3,3]
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[5,3,3]
CDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c4.png
(order 14400)
15CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png(33) | CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(34) | CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png(35) | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png(36)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(37) | CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png(38) | CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(39) | CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png(40) | CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png(41)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png(42) | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png(43) | CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png(44) | CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png(45) | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png(46)
[5,3,3]+
(order 7200)
(1)CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png(−)
[3,2,3]
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
[3,2,3]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 3.pngCDel node c3.png
(order 36)
0(none)[3,2,3]+
(order 18)
0(none)
[2+[3,2,3]]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 2.pngCDel node c2.pngCDel 3.pngCDel node c1.png
(order 72)
0CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png[2+[3,2,3]]+
(order 36)
0(none)
[[3],2,3]=[6,2,3]
CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c2.pngCDel 3.pngCDel node c3.png = CDel node c1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node c2.pngCDel 3.pngCDel node c3.png
(order 72)
1CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png[1[3,2,3]]=[[3],2,3]+=[6,2,3]+
(order 36)
(1)CDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
[(2+,4)[3,2,3]]=[2+[6,2,6]]
CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c1.pngCDel 3.pngCDel node c1.png = CDel node c1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node c1.pngCDel 6.pngCDel node.png
(order 288)
1CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png[(2+,4)[3,2,3]]+=[2+[6,2,6]]+
(order 144)
(1)CDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
[4,2,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
[4,2,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 4.pngCDel node c4.png
(order 64)
0(none)[4,2,4]+
(order 32)
0(none)
[2+[4,2,4]]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 2.pngCDel node c2.pngCDel 4.pngCDel node c1.png
(order 128)
0(none)[2+[(4,2+,4,2+)]]
(order 64)
0(none)
[(3,3)[4,2*,4]]=[4,3,3]
CDel node c1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node c1.png = CDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
(order 384)
(1)CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png(10)[(3,3)[4,2*,4]]+=[4,3,3]+
(order 192)
(1)CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png(12)
[[4],2,4]=[8,2,4]
CDel node c1.pngCDel 4.pngCDel node c1.pngCDel 2.pngCDel node c2.pngCDel 4.pngCDel node c3.png = CDel node c1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel node c2.pngCDel 4.pngCDel node c3.png
(order 128)
(1)CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png[1[4,2,4]]=[[4],2,4]+=[8,2,4]+
(order 64)
(1)CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
[(2+,4)[4,2,4]]=[2+[8,2,8]]
CDel node c1.pngCDel 4.pngCDel node c1.pngCDel 2.pngCDel node c1.pngCDel 4.pngCDel node c1.png = CDel node c1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel node c1.pngCDel 8.pngCDel node.png
(order 512)
(1)CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png[(2+,4)[4,2,4]]+=[2+[8,2,8]]+
(order 256)
(1)CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png

Uniform star polychora

Other than the aforementioned infinite duoprism and antiprism prism families, which have infinitely many nonconvex members, many uniform star polychora have been discovered. In 1852, Ludwig Schläfli discovered four regular star polychora: {5,3,5/2}, {5/2,3,5}, {3,3,5/2}, and {5/2,3,3}. In 1883, Edmund Hess found the other six: {3,5,5/2}, {5/2,5,3}, {5,5/2,5}, {5/2,5,5/2}, {5,5/2,3}, and {3,5/2,5}. Norman Johnson described three uniform antiprism-like star polychora in his doctoral dissertation of 1966: they are based on the three ditrigonal polyhedra sharing the edges and vertices of the regular dodecahedron. Many more have been found since then by other researchers, including Jonathan Bowers and George Olshevsky, creating a total count of 2127 known uniform star polychora at present (not counting the infinite set of duoprisms based on star polygons). There is currently no proof of the set's completeness.

See also

Related Research Articles

<span class="mw-page-title-main">Convex uniform honeycomb</span> Spatial tiling of convex uniform polyhedra

In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

<span class="mw-page-title-main">Prism (geometry)</span> Solid with 2 parallel n-gonal bases connected by n parallelograms

In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

In geometry, the term semiregular polyhedron is used variously by different authors.

<span class="mw-page-title-main">Duoprism</span> Cartesian product of two polytopes

In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an n-polytope and an m-polytope is an (n+m)-polytope, where n and m are dimensions of 2 (polygon) or higher.

<span class="mw-page-title-main">Runcinated tesseracts</span>

In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.

<span class="mw-page-title-main">Rectified 600-cell</span>

In geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Alternation (geometry)</span> Removal of alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Runcinated 120-cells</span>

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

<span class="mw-page-title-main">Uniform 6-polytope</span> Uniform 6-dimensional polytope

In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges.

<span class="mw-page-title-main">Snub (geometry)</span> Geometric operation applied to a polyhedron

In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube and snub dodecahedron.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Prismatic uniform 4-polytope</span> Type of uniform 4-polytope in four-dimensional geography

In four-dimensional geometry, a prismatic uniform 4-polytope is a uniform 4-polytope with a nonconnected Coxeter diagram symmetry group. These figures are analogous to the set of prisms and antiprism uniform polyhedra, but add a third category called duoprisms, constructed as a product of two regular polygons.

<span class="mw-page-title-main">Point groups in four dimensions</span>

In geometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere.

References

  1. N.W. Johnson: Geometries and Transformations, (2018) ISBN   978-1-107-10340-5 Chapter 11: Finite Symmetry Groups, 11.1 Polytopes and Honeycombs, p.224
  2. T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions , Messenger of Mathematics, Macmillan, 1900
  3. "Archived copy" (PDF). Archived from the original (PDF) on 2009-12-29. Retrieved 2010-08-13.{{cite web}}: CS1 maint: archived copy as title (link)
  4. Elte (1912)
  5. Uniform Polytopes in Four Dimensions December 6, 1998 oldest archive
  6. The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes By David Darling, (2004) ASIN: B00SB4TU58
  7. 1 2 3 4 5 6 7 8 9 10 11 Johnson (2015), Chapter 11, section 11.5 Spherical Coxeter groups, 11.5.5 full polychoric groups
  8. Uniform Polytopes in Four Dimensions , George Olshevsky.
  9. Möller, Marco (2004). Vierdimensionale Archimedische Polytope (PDF) (Doctoral thesis) (in German). University of Hamburg.
  10. Conway (2008)
  11. Multidimensional Glossary, George Olshevsky
  12. https://www.mit.edu/~hlb/Associahedron/program.pdf Convex and Abstract Polytopes workshop (2005), N.Johnson — "Uniform Polychora" abstract
  13. 1 2 "Uniform Polychora". www.polytope.net. Retrieved February 20, 2020.
  14. "Uniform polytope". Polytope Wiki. 6 November 2023. Retrieved 11 November 2023.
  15. Coxeter, Regular polytopes, 7.7 Schlaefli's criterion eq 7.78, p.135
  16. "S3s3s3s".
  17. "S3s3s4s".
  18. "S3s4s3s".
  19. "S3s3s5s".
  20. sns2s2mx, Richard Klitzing
  21. H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) p. 582-588 2.7 The four-dimensional analogues of the snub cube
  22. "Polytope-tree".
  23. "tuta".
  24. Category S1: Simple Scaliforms tutcup
  25. "Prissi".
  26. Category S3: Special Scaliforms prissi
  27. "bidex". bendwavy.org. Retrieved 11 November 2023.
  28. Category S3: Special Scaliforms bidex
  29. The Bi-icositetradiminished 600-cell
  30. "spidrox". bendwavy.org. Retrieved 11 November 2023.
  31. Category S4: Scaliform Swirlprisms spidrox
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds