Rectified 600-cell

Last updated
Rectified 600-cell
Rectified 600-cell schlegel halfsolid.png
Schlegel diagram, shown as Birectified 120-cell, with 119 icosahedral cells colored
Type Uniform 4-polytope
Uniform index34
Schläfli symbol t1{3,3,5}
or r{3,3,5}
Coxeter-Dynkin diagram CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells600 (3.3.3.3) Uniform polyhedron-33-t1.svg
120 {3,5} Icosahedron.png
Faces1200+2400 {3}
Edges3600
Vertices720
Vertex figure Rectified 600-cell verf.png
pentagonal prism
Symmetry group H4, [3,3,5], order 14400
Properties convex, vertex-transitive, edge-transitive

In geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices.

Contents

Containing the cell realms of both the regular 120-cell and the regular 600-cell, it can be considered analogous to the polyhedron icosidodecahedron, which is a rectified icosahedron and rectified dodecahedron.

The vertex figure of the rectified 600-cell is a uniform pentagonal prism.

Semiregular polytope

It is one of three semiregular 4-polytopes made of two or more cells which are Platonic solids, discovered by Thorold Gosset in his 1900 paper. He called it a octicosahedric for being made of octahedron and icosahedron cells.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC600.

Alternate names

Images

Orthographic projections by Coxeter planes
H4-F4
600-cell t1 H4.svg
[30]
600-cell t1 p20.svg
[20]
600-cell t1 F4.svg
[12]
H3A2 / B3 / D4A3 / B2
600-cell t1 H3.svg
[10]
600-cell t1 A2.svg
[6]
600-cell t1.svg
[4]
Stereographic projection Net
Stereographic rectified 600-cell.png Rectified hexacosichoron net.png

Diminished rectified 600-cell

120-diminished rectified 600-cell
Type4-polytope
Cells840 cells:
600 square pyramid
120 pentagonal prism
120 pentagonal antiprism
Faces2640:
1800 {3}
600 {4}
240 {5}
Edges2400
Vertices600
Vertex figure Spidrox-vertex figure.png
Bi-diminished pentagonal prism
(1) 3.3.3.3 + (4) 3.3.4 Square pyramid.png
(2) 4.4.5 Pentagonal prism.png
(2) 3.3.3.5 Pentagonal antiprism.png
Symmetry group 1/12[3,3,5], order 1200
Properties convex

A related vertex-transitive polytope can be constructed with equal edge lengths removes 120 vertices from the rectified 600-cell, but isn't uniform because it contains square pyramid cells, [1] discovered by George Olshevsky, calling it a swirlprismatodiminished rectified hexacosichoron, with 840 cells (600 square pyramids, 120 pentagonal prisms, and 120 pentagonal antiprisms), 2640 faces (1800 triangles, 600 square, and 240 pentagons), 2400 edges, and 600 vertices. It has a chiral bi-diminished pentagonal prism vertex figure.

Each removed vertex creates a pentagonal prism cell, and diminishes two neighboring icosahedra into pentagonal antiprisms, and each octahedron into a square pyramid. [2]

This polytope can be partitioned into 12 rings of alternating 10 pentagonal prisms and 10 antiprisms, and 30 rings of square pyramids.

Schlegel diagram Orthogonal projection
Spidrox-ring2-perspective.png
Two orthogonal rings shown
Spidrox-square pyramid ring.png
2 rings of 30 red square pyramids, one ring along perimeter, and one centered.

Swirlprismatodiminished rectified hexacosichoron net.png
Net

H4 family

H4 family polytopes
120-cell rectified
120-cell
truncated
120-cell
cantellated
120-cell
runcinated
120-cell
cantitruncated
120-cell
runcitruncated
120-cell
omnitruncated
120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
{5,3,3}r{5,3,3}t{5,3,3}rr{5,3,3}t0,3{5,3,3}tr{5,3,3}t0,1,3{5,3,3}t0,1,2,3{5,3,3}
120-cell t0 H3.svg 120-cell t1 H3.svg 120-cell t01 H3.svg 120-cell t02 H3.png 120-cell t03 H3.png 120-cell t012 H3.png 120-cell t013 H3.png 120-cell t0123 H3.png
600-cell t0 H3.svg 600-cell t1 H3.svg 600-cell t01 H3.svg 600-cell t02 H3.svg 120-cell t12 H3.png 120-cell t123 H3.png 120-cell t023 H3.png
600-cell rectified
600-cell
truncated
600-cell
cantellated
600-cell
bitruncated
600-cell
cantitruncated
600-cell
runcitruncated
600-cell
omnitruncated
600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
{3,3,5}r{3,3,5}t{3,3,5}rr{3,3,5}2t{3,3,5}tr{3,3,5}t0,1,3{3,3,5}t0,1,2,3{3,3,5}

Pentagonal prism vertex figures

r{p,3,5}
Space S3 H3
FormFiniteCompactParacompactNoncompact
Name r{3,3,5}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
r{5,3,5}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{6,3,5}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
r{7,3,5}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
... r{,3,5}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
Image Stereographic rectified 600-cell.png H3 435 CC center 0100.png H3 535 CC center 0100.png H3 635 boundary 0100.png
Cells
Icosahedron.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform polyhedron-33-t1.svg
r{3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cuboctahedron.png
r{4,3}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron.png
r{5,3}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.svg
r{6,3}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Triheptagonal tiling.svg
r{7,3}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 23i-2.png
r{,3}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png

Related Research Articles

<span class="mw-page-title-main">Regular icosahedron</span> Convex polyhedron with 20 triangular faces

In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Runcinated 5-cell</span> Four-dimensional geometrical object

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Rectified 5-cell</span> Uniform polychoron

In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In total it has 30 triangle faces, 30 edges, and 10 vertices. Each vertex is surrounded by 3 octahedra and 2 tetrahedra; the vertex figure is a triangular prism.

<span class="mw-page-title-main">Snub 24-cell</span>

In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Bitruncated cubic honeycomb</span>

The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

<span class="mw-page-title-main">Order-5 cubic honeycomb</span> Regular tiling of hyperbolic 3-space

In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

<span class="mw-page-title-main">Icosahedral honeycomb</span> Regular tiling of hyperbolic 3-space

In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.

<span class="mw-page-title-main">Truncated 24-cells</span>

In geometry, a truncated 24-cell is a uniform 4-polytope formed as the truncation of the regular 24-cell.

<span class="mw-page-title-main">Grand antiprism</span> Uniform 4-polytope bounded by 320 cells

In geometry, the grand antiprism or pentagonal double antiprismoid is a uniform 4-polytope (4-dimensional uniform polytope) bounded by 320 cells: 20 pentagonal antiprisms, and 300 tetrahedra. It is an anomalous, non-Wythoffian uniform 4-polytope, discovered in 1965 by Conway and Guy. Topologically, under its highest symmetry, the pentagonal antiprisms have D5d symmetry and there are two types of tetrahedra, one with S4 symmetry and one with Cs symmetry.

<span class="mw-page-title-main">Rectified 120-cell</span>

In geometry, a rectified 120-cell is a uniform 4-polytope formed as the rectification of the regular 120-cell.

<span class="mw-page-title-main">Rectified 24-cell</span>

In geometry, the rectified 24-cell or rectified icositetrachoron is a uniform 4-dimensional polytope, which is bounded by 48 cells: 24 cubes, and 24 cuboctahedra. It can be obtained by rectification of the 24-cell, reducing its octahedral cells to cubes and cuboctahedra.

<span class="mw-page-title-main">Cantellated 5-cell</span>

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

<span class="mw-page-title-main">Cantellated 24-cells</span>

In four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation of the regular 24-cell.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Truncated 120-cells</span> Uniform 4-polytope

In geometry, a truncated 120-cell is a uniform 4-polytope formed as the truncation of the regular 120-cell.

<span class="mw-page-title-main">Cantellated 120-cell</span> 4D geometry item

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.

<span class="mw-page-title-main">Runcinated 120-cells</span>

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

References

  1. Category S4: Scaliform Swirlprisms spidrox
  2. Klitzing, Richard. "4D convex scaliform polychora swirlprismatodiminished rectified hexacosachoron".
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds