321 | 231 | 132 | |||
Rectified 321 | birectified 321 | ||||
Rectified 231 | Rectified 132 | ||||
Orthogonal projections in E7 Coxeter plane |
---|
In 7-dimensional geometry, the 321 polytope is a uniform 7-polytope, constructed within the symmetry of the E7 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 7-ic semi-regular figure. [1]
Its Coxeter symbol is 321, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 3-node sequences.
The rectified 321 is constructed by points at the mid-edges of the 321. The birectified 321 is constructed by points at the triangle face centers of the 321. The trirectified 321 is constructed by points at the tetrahedral centers of the 321, and is the same as the rectified 132.
These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform 6-polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .
321 polytope | |
---|---|
Type | Uniform 7-polytope |
Family | k21 polytope |
Schläfli symbol | {3,3,3,32,1} |
Coxeter symbol | 321 |
Coxeter diagram | |
6-faces | 702 total: 126 311 576 {35} |
5-faces | 6048: 4032 {34} 2016 {34} |
4-faces | 12096 {33} |
Cells | 10080 {3,3} |
Faces | 4032 {3} |
Edges | 756 |
Vertices | 56 |
Vertex figure | 221 polytope |
Petrie polygon | octadecagon |
Coxeter group | E7, [33,2,1], order 2903040 |
Properties | convex |
In 7-dimensional geometry, the 321 polytope is a uniform polytope. It has 56 vertices, and 702 facets: 126 311 and 576 6-simplexes.
For visualization this 7-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 56 vertices within an 18-gonal regular polygon (called a Petrie polygon). Its 756 edges are drawn between 3 rings of 18 vertices, and 2 vertices in the center. Specific higher elements (faces, cells, etc.) can also be extracted and drawn on this projection.
The 1-skeleton of the 321 polytope is the Gosset graph.
This polytope, along with the 7-simplex, can tessellate 7-dimensional space, represented by 331 and Coxeter-Dynkin diagram: .
The 56 vertices can be most simply represented in 8-dimensional space, obtained by the 28 permutations of the coordinates and their opposite:
Its construction is based on the E7 group. Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 3-node sequence.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the 6-simplex, .
Removing the node on the end of the 2-length branch leaves the 6-orthoplex in its alternated form: 311, .
Every simplex facet touches a 6-orthoplex facet, while alternate facets of the orthoplex touch either a simplex or another orthoplex.
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 221 polytope, .
Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders. [4]
E7 | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | k-figures | notes | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E6 | ( ) | f0 | 56 | 27 | 216 | 720 | 1080 | 432 | 216 | 72 | 27 | 221 | E7/E6 = 72x8!/72x6! = 56 | |
D5A1 | { } | f1 | 2 | 756 | 16 | 80 | 160 | 80 | 40 | 16 | 10 | 5-demicube | E7/D5A1 = 72x8!/16/5!/2 = 756 | |
A4A2 | {3} | f2 | 3 | 3 | 4032 | 10 | 30 | 20 | 10 | 5 | 5 | rectified 5-cell | E7/A4A2 = 72x8!/5!/2 = 4032 | |
A3A2A1 | {3,3} | f3 | 4 | 6 | 4 | 10080 | 6 | 6 | 3 | 2 | 3 | triangular prism | E7/A3A2A1 = 72x8!/4!/3!/2 = 10080 | |
A4A1 | {3,3,3} | f4 | 5 | 10 | 10 | 5 | 12096 | 2 | 1 | 1 | 2 | isosceles triangle | E7/A4A1 = 72x8!/5!/2 = 12096 | |
A5A1 | {3,3,3,3} | f5 | 6 | 15 | 20 | 15 | 6 | 4032 | * | 1 | 1 | { } | E7/A5A1 = 72x8!/6!/2 = 4032 | |
A5 | 6 | 15 | 20 | 15 | 6 | * | 2016 | 0 | 2 | E7/A5 = 72x8!/6! = 2016 | ||||
A6 | {3,3,3,3,3} | f6 | 7 | 21 | 35 | 35 | 21 | 10 | 0 | 576 | * | ( ) | E7/A6 = 72x8!/7! = 576 | |
D6 | {3,3,3,3,4} | 12 | 60 | 160 | 240 | 192 | 32 | 32 | * | 126 | E7/D6 = 72x8!/32/6! = 126 |
E7 | E6 / F4 | B7 / A6 |
---|---|---|
[18] | [12] | [7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] | [12/2] | [10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] | [6] | [4] |
The 321 is fifth in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope. Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes.
k21 figures in n dimensions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | Finite | Euclidean | Hyperbolic | ||||||||
En | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Coxeter group | E3=A2A1 | E4=A4 | E5=D5 | E6 | E7 | E8 | E9 = = E8+ | E10 = = E8++ | |||
Coxeter diagram | |||||||||||
Symmetry | [3−1,2,1] | [30,2,1] | [31,2,1] | [32,2,1] | [33,2,1] | [34,2,1] | [35,2,1] | [36,2,1] | |||
Order | 12 | 120 | 1,920 | 51,840 | 2,903,040 | 696,729,600 | ∞ | ||||
Graph | - | - | |||||||||
Name | −121 | 021 | 121 | 221 | 321 | 421 | 521 | 621 |
It is in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. (A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.)
Space | Finite | Euclidean | Hyperbolic | |||
---|---|---|---|---|---|---|
n | 4 | 5 | 6 | 7 | 8 | 9 |
Coxeter group | A3A1 | A5 | D6 | E7 | =E7+ | =E7++ |
Coxeter diagram | ||||||
Symmetry | [3−1,3,1] | [30,3,1] | [[31,3,1]] = [4,3,3,3,3] | [32,3,1] | [33,3,1] | [34,3,1] |
Order | 48 | 720 | 46,080 | 2,903,040 | ∞ | |
Graph | - | - | ||||
Name | 31,-1 | 310 | 311 | 321 | 331 | 341 |
Rectified 321 polytope | |
---|---|
Type | Uniform 7-polytope |
Schläfli symbol | t1{3,3,3,32,1} |
Coxeter symbol | t1(321) |
Coxeter diagram | |
6-faces | 758 |
5-faces | 44352 |
4-faces | 70560 |
Cells | 48384 |
Faces | 11592 |
Edges | 12096 |
Vertices | 756 |
Vertex figure | 5-demicube prism |
Petrie polygon | octadecagon |
Coxeter group | E7, [33,2,1], order 2903040 |
Properties | convex |
Its construction is based on the E7 group. Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single node on the end of the 3-node sequence.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the 6-simplex, .
Removing the node on the end of the 2-length branch leaves the rectified 6-orthoplex in its alternated form: t1311, .
Removing the node on the end of the 3-length branch leaves the 221, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 5-demicube prism, .
E7 | E6 / F4 | B7 / A6 |
---|---|---|
[18] | [12] | [7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] | [12/2] | [10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] | [6] | [4] |
Birectified 321 polytope | |
---|---|
Type | Uniform 7-polytope |
Schläfli symbol | t2{3,3,3,32,1} |
Coxeter symbol | t2(321) |
Coxeter diagram | |
6-faces | 758 |
5-faces | 12348 |
4-faces | 68040 |
Cells | 161280 |
Faces | 161280 |
Edges | 60480 |
Vertices | 4032 |
Vertex figure | 5-cell-triangle duoprism |
Petrie polygon | octadecagon |
Coxeter group | E7, [33,2,1], order 2903040 |
Properties | convex |
Its construction is based on the E7 group. Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single node on the end of the 3-node sequence.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the birectified 6-simplex, .
Removing the node on the end of the 2-length branch leaves the birectified 6-orthoplex in its alternated form: t2(311), .
Removing the node on the end of the 3-length branch leaves the rectified 221 polytope in its alternated form: t1(221), .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes rectified 5-cell-triangle duoprism, .
E7 | E6 / F4 | B7 / A6 |
---|---|---|
[18] | [12] | [7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] | [12/2] | [10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] | [6] | [4] |
In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.
In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.
In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams.
In geometry, a uniform k21 polytope is a polytope in k + 4 dimensions constructed from the En Coxeter group, and having only regular polytope facets. The family was named by their Coxeter symbol k21 by its bifurcating Coxeter–Dynkin diagram, with a single ring on the end of the k-node sequence.
In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.
In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices).
In 7-dimensional geometry, 132 is a uniform polytope, constructed from the E7 group.
In 8-dimensional geometry, the 142 is a uniform 8-polytope, constructed within the symmetry of the E8 group.
In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group.
In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope.
In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 8-ic semi-regular figure.
In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.
In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.
In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex.
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.
In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram.
In seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex.
In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex.
In nine-dimensional geometry, a rectified 9-simplex is a convex uniform 9-polytope, being a rectification of the regular 9-simplex.
In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded.