D4 polytope

Last updated

In 4-dimensional geometry, there are 7 uniform 4-polytopes with reflections of D4 symmetry, all are shared with higher symmetry constructions in the B4 or F4 symmetry families. there is also one half symmetry alternation, the snub 24-cell.

Contents

Visualizations

Each can be visualized as symmetric orthographic projections in Coxeter planes of the D4 Coxeter group, and other subgroups. The B4 coxeter planes are also displayed, while D4 polytopes only have half the symmetry. They can also be shown in perspective projections of Schlegel diagrams, centered on different cells.

D4 polytopes related to B4
indexName
Coxeter diagram
CDel nodes 10ru.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.png
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.png = CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png
Coxeter plane projections Schlegel diagrams Net
B4
[8]
D4, B3
[6]
D3, B2
[4]
Cube
centered
Tetrahedron
centered
1demitesseract
(Same as 16-cell)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = h{4,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = {3,3,4}
{3,31,1}
4-cube t3.svg 4-demicube t0 D4.svg 4-demicube t0 D3.svg Schlegel wireframe 16-cell.png 16-cell net.png
2cantic tesseract
(Same as truncated 16-cell)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = h2{4,3,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = t{3,3,4}
t{3,31,1}
4-cube t23.svg 4-demicube t01 D4.svg 4-demicube t01 D3.svg Schlegel half-solid truncated 16-cell.png Truncated hexadecachoron net.png
3runcic tesseract
birectified 16-cell
(Same as rectified tesseract)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = h3{4,3,3}
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png = CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png = r{4,3,3}
2r{3,31,1}
4-cube t1.svg 4-cube t1 B3.svg 4-demicube t02 D3.svg Schlegel half-solid rectified 8-cell.png Rectified tesseract net.png
4runcicantic tesseract
bitruncated 16-cell
(Same as bitruncated tesseract)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = h2,3{4,3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png = 2t{4,3,3}
2t{3,31,1}
4-cube t12.svg 4-cube t12 B3.svg 4-demicube t012 D3.svg Schlegel half-solid bitruncated 16-cell.png Tesseractihexadecachoron net.png
D4 polytopes related to F4 and B4
indexName
Coxeter diagram
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel 3.pngCDel node c1.png = CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node h0.png = CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Coxeter plane projections Schlegel diagrams Parallel
3D
Net
F4
[12]
B4
[8]
D4, B3
[6]
D3, B2
[2]
Cube
centered
Tetrahedron
centered
D4
[6]
5rectified 16-cell
(Same as 24-cell )
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
{31,1,1} = r{3,3,4} = {3,4,3}
24-cell t0 F4.svg 24-cell t0 B4.svg 4-demicube t1 D4.svg 24-cell t3 B2.svg Schlegel wireframe 24-cell.png 24-cell net.png
6cantellated 16-cell
(Same as rectified 24-cell )
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
r{31,1,1} = rr{3,3,4} = r{3,4,3}
24-cell t1 F4.svg 4-cube t02.svg 24-cell t2 B3.svg 24-cell t2 B2.svg Schlegel half-solid cantellated 16-cell.png Rectified icositetrachoron net.png
7cantitruncated 16-cell
(Same as truncated 24-cell )
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
t{31,1,1} = tr{3,31,1} = tr{3,3,4} = t{3,4,3}
24-cell t01 F4.svg 4-cube t012.svg 24-cell t23 B3.svg 4-demicube t123 D3.svg Schlegel half-solid truncated 24-cell.png Truncated icositetrachoron net.png
8(Same as snub 24-cell)
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel splitsplit1.pngCDel branch3 hh.pngCDel node h.png = CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
s{31,1,1} = sr{3,31,1} = sr{3,3,4} = s{3,4,3}
24-cell h01 F4.svg 24-cell h01 B4.svg 24-cell h01 B3.svg 24-cell h01 B2.svg Ortho solid 969-uniform polychoron 343-snub.png Snub disicositetrachoron net.png

Coordinates

The base point can generate the coordinates of the polytope by taking all coordinate permutations and sign combinations. The edges' length will be 2. Some polytopes have two possible generator points. Points are prefixed by Even to imply only an even count of sign permutations should be included.

#Name(s)Base pointJohnson Coxeter diagrams
D4B4F4
14Even (1,1,1,1) demitesseract CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3h3γ4Even (1,1,1,3) runcic tesseract CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
2h2γ4Even (1,1,3,3) cantic tesseract CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
4h2,3γ4Even (1,3,3,3) runcicantic tesseract CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
1t3γ4 = β4(0,0,0,2) 16-cell CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5t2γ4 = t1β4(0,0,2,2) rectified 16-cell CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
2t2,3γ4 = t0,1β4(0,0,2,4) truncated 16-cell CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6t1γ4 = t2β4(0,2,2,2) cantellated 16-cell CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
9t1,3γ4 = t0,2β4(0,2,2,4) cantellated 16-cell CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
7t1,2,3γ = t0,1,2β4(0,2,4,6) cantitruncated 16-cell CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
8s{31,1,1}(0,1,φ,φ+1)/2 Snub 24-cell CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

Related Research Articles

4-polytope Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells.

5-cell

In geometry, the 5-cell is a four-dimensional object bounded by 5 tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is the 4-simplex (Coxeter's polytope), the simplest possible convex regular 4-polytope (four-dimensional analogue of a Platonic solid), and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The pentachoron is a four dimensional pyramid with a tetrahedral base.

120-cell

In geometry, the 120-cell is the convex regular 4-polytope with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid.

Uniform 4-polytope

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

Rectified 600-cell

In geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices.

Rectified 5-cell

In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In total it has 30 triangle faces, 30 edges, and 10 vertices. Each vertex is surrounded by 3 octahedra and 2 tetrahedra; the vertex figure is a triangular prism.

Cantellated tesseract

In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.

In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract.

Rectified tesseract

In geometry, the rectified tesseract, rectified 8-cell is a uniform 4-polytope bounded by 24 cells: 8 cuboctahedra, and 16 tetrahedra. It has half the vertices of a runcinated tesseract, with its construction, called a runcic tesseract.

Rectified 120-cell

In geometry, a rectified 120-cell is a uniform 4-polytope formed as the rectification of the regular 120-cell.

Cantellated 5-cell

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

Cantellated 24-cells

In four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation of the regular 24-cell.

Runcinated 24-cells

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

Truncated 120-cells

In geometry, a truncated 120-cell is a uniform 4-polytope formed as the truncation of the regular 120-cell.

Cantellated 120-cell

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.

Runcinated 120-cells

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

A<sub>4</sub> polytope

In 4-dimensional geometry, there are 9 uniform polytopes with A4 symmetry. There is one self-dual regular form, the 5-cell with 5 vertices.

B<sub>4</sub> polytope

In 4-dimensional geometry, there are 15 uniform 4-polytopes with B4 symmetry. There are two regular forms, the tesseract, and 16-cell with 16 and 8 vertices respectively.

H<sub>4</sub> polytope

In 4-dimensional geometry, there are 15 uniform polytopes with H4 symmetry. Two of these, the 120-cell and 600-cell, are regular.

References