Hexagonal antiprism

Last updated
Uniform hexagonal antiprism
Hexagonal antiprism.png
Type Prismatic uniform polyhedron
Elements F = 14, E = 24
V = 12 (χ = 2)
Faces by sides12{3}+2{6}
Schläfli symbol s{2,12}
sr{2,6}
Wythoff symbol | 2 2 6
Coxeter diagram CDel node h.pngCDel 2x.pngCDel node h.pngCDel 12.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node h.png
Symmetry group D6d, [2+,12], (2*6), order 24
Rotation group D6, [6,2]+, (622), order 12
References U 77(d)
Dual Hexagonal trapezohedron
Properties convex
Hexagonal antiprism vertfig.png
Vertex figure
3.3.3.6

In geometry, the hexagonal antiprism is the 4th in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps.

Contents

Antiprisms are similar to prisms except the bases are twisted relative to each other, and that the side faces are triangles, rather than quadrilaterals.

In the case of a regular n-sided base, one usually considers the case where its copy is twisted by an angle 180°/n. Extra regularity is obtained by the line connecting the base centers being perpendicular to the base planes, making it a right antiprism. As faces, it has the two n-gonal bases and, connecting those bases, 2n isosceles triangles.

If faces are all regular, it is a semiregular polyhedron.

Crossed antiprism

A crossed hexagonal antiprism is a star polyhedron, topologically identical to the convex hexagonal antiprism with the same vertex arrangement, but it can't be made uniform; the sides are isosceles triangles. Its vertex configuration is 3.3/2.3.6, with one triangle retrograde. It has D6d symmetry, order 24.

Crossed hexagonal antiprism.png

The hexagonal faces can be replaced by coplanar triangles, leading to a nonconvex polyhedron with 24 equilateral triangles.

Augmented hexagonal antiprism flat.png
Uniform hexagonal dihedral spherical polyhedra
Symmetry: [6,2], (*622)[6,2]+, (622)[6,2+], (2*3)
Hexagonal dihedron.png Dodecagonal dihedron.png Hexagonal dihedron.png Spherical hexagonal prism.svg Spherical hexagonal hosohedron.svg Spherical truncated trigonal prism.png Spherical dodecagonal prism2.png Spherical hexagonal antiprism.svg Spherical trigonal antiprism.svg
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
{6,2} t{6,2} r{6,2} t{2,6} {2,6} rr{6,2} tr{6,2} sr{6,2} s{2,6}
Duals to uniforms
Spherical hexagonal hosohedron.svg Spherical dodecagonal hosohedron.svg Spherical hexagonal hosohedron.svg Spherical hexagonal bipyramid.svg Hexagonal dihedron.png Spherical hexagonal bipyramid.svg Spherical dodecagonal bipyramid.svg Spherical hexagonal trapezohedron.svg Spherical trigonal trapezohedron.svg
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V3.3.3.3
Family of uniform n-gonal antiprisms
Antiprism name Digonal antiprism (Trigonal)
Triangular antiprism
(Tetragonal)
Square antiprism
Pentagonal antiprism Hexagonal antiprism Heptagonal antiprism ... Apeirogonal antiprism
Polyhedron image Digonal antiprism.png Trigonal antiprism.png Square antiprism.png Pentagonal antiprism.png Hexagonal antiprism.png Antiprism 7.png ...
Spherical tiling image Spherical digonal antiprism with digonal face.svg Spherical trigonal antiprism.svg Spherical square antiprism.svg Spherical pentagonal antiprism.svg Spherical hexagonal antiprism.svg Spherical heptagonal antiprism.svg Plane tiling image Infinite antiprism.svg
Vertex config. 2.3.3.33.3.3.34.3.3.35.3.3.36.3.3.37.3.3.3...∞.3.3.3

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Johnson solid</span> 92 non-uniform convex polyhedra, with each face a regular polygon

In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnson solid is the square-based pyramid with equilateral sides ; it has 1 square face and 4 triangular faces. Some authors require that the solid not be uniform before they refer to it as a "Johnson solid".

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Prism (geometry)</span> Solid with 2 parallel n-gonal bases connected by n parallelograms

In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Star polygon</span> Regular non-convex polygon

In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations on regular simple or star polygons.

<span class="mw-page-title-main">Trapezohedron</span> Polyhedron made of congruent kites arranged radially

In geometry, an n-gonaltrapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites.

In geometry, the term semiregular polyhedron is used variously by different authors.

<span class="mw-page-title-main">Hexagonal bipyramid</span> Polyhedron; 2 hexagonal pyramids joined base-to-base

A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces, 8 vertices and 18 edges. The 12 faces are identical isosceles triangles.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism or trigonal prism is a prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a right triangular prism. A right triangular prism may be both semiregular and uniform.

<span class="mw-page-title-main">Square antiprism</span>

In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an anticube.

<span class="mw-page-title-main">Pentagonal antiprism</span> Antiprism with a five-sided base

In geometry, the pentagonal antiprism is the third in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It consists of two pentagons joined to each other by a ring of ten triangles for a total of twelve faces. Hence, it is a non-regular dodecahedron.

<span class="mw-page-title-main">Bicupola (geometry)</span> Solid made from 2 cupolae joined base-to-base

In geometry, a bicupola is a solid formed by connecting two cupolae on their bases.

In geometry, a snub polyhedron is a polyhedron obtained by performing a snub operation: alternating a corresponding omnitruncated or truncated polyhedron, depending on the definition. Some, but not all, authors include antiprisms as snub polyhedra, as they are obtained by this construction from a degenerate "polyhedron" with only two faces.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty', and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".