Hexagonal bipyramid

Last updated
Hexagonal bipyramid
Hexagonale bipiramide.png
Type bipyramid
Faces 12 triangles
Vertices 8
Vertex configuration V4.4.6
Schläfli symbol { } + {6}
Coxeter diagram CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 6.pngCDel node.png
CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Symmetry group D6h, [6,2], (*226), order 24
Rotation group D6, [6,2]+, (226), order 12
Dual polyhedron hexagonal prism
Properties convex, face-transitive

A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces, 8 vertices and 18 edges. The 12 faces are identical isosceles triangles.

Contents

Although it is face-transitive, it is not a Platonic solid because some vertices have four faces meeting and others have six faces, and it is not a Johnson solid because its faces cannot be equilateral triangles; 6 equilateral triangles would make a flat vertex.

It is one of an infinite set of bipyramids. Having twelve faces, it is a type of dodecahedron, although that name is usually associated with the regular polyhedral form with pentagonal faces.

The hexagonal bipyramid has a plane of symmetry (which is horizontal in the figure to the right) where the bases of the two pyramids are joined. This plane is a regular hexagon. There are also six planes of symmetry crossing through the two apices. These planes are rhombic and lie at 30° angles to each other, perpendicular to the horizontal plane.

Images

It can be drawn as a tiling on a sphere which also represents the fundamental domains of [3,2], *322 dihedral symmetry:

Spherical hexagonal bipyramid.svg

The hexagonal bipyramid, dt{2,6}, can be in sequence truncated, tdt{2,6} and alternated (snubbed), sdt{2,6}:

Snub hexagonal bipyramid sequence.png

The hexagonal bipyramid, dt{2,6}, can be in sequence rectified, rdt{2,6}, truncated, trdt{2,6} and alternated (snubbed), srdt{2,6}:

Snub rectified hexagonal bipyramid sequence.png
Uniform hexagonal dihedral spherical polyhedra
Symmetry: [6,2], (*622)[6,2]+, (622)[6,2+], (2*3)
Hexagonal dihedron.png Dodecagonal dihedron.png Hexagonal dihedron.png Spherical hexagonal prism.svg Spherical hexagonal hosohedron.svg Spherical truncated trigonal prism.png Spherical dodecagonal prism2.png Spherical hexagonal antiprism.svg Spherical trigonal antiprism.svg
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
{6,2} t{6,2} r{6,2} t{2,6} {2,6} rr{6,2} tr{6,2} sr{6,2} s{2,6}
Duals to uniforms
Spherical hexagonal hosohedron.svg Spherical dodecagonal hosohedron.svg Spherical hexagonal hosohedron.svg Spherical hexagonal bipyramid.svg Hexagonal dihedron.png Spherical hexagonal bipyramid.svg Spherical dodecagonal bipyramid.svg Spherical hexagonal trapezohedron.svg Spherical trigonal trapezohedron.svg
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V3.3.3.3

It is the first polyhedra in a sequence defined by the face configuration V4.6.2n. This group is special for having all even number of edges per vertex and form bisecting planes through the polyhedra and infinite lines in the plane, and continuing into the hyperbolic plane for any

With an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors.

Each face on these domains also corresponds to the fundamental domain of a symmetry group with order 2,3,n mirrors at each triangle face vertex.

*n32 symmetry mutation of omnitruncated tilings: 4.6.2n
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*32
[,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Figures Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png Truncated triheptagonal tiling.svg H2-8-3-omnitruncated.svg H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6. 4.6.24i4.6.18i4.6.12i4.6.6i
Duals Spherical hexagonal bipyramid.svg Spherical tetrakis hexahedron.svg Spherical disdyakis dodecahedron.svg Spherical disdyakis triacontahedron.svg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.V4.6.24iV4.6.18iV4.6.12iV4.6.6i
Regular right symmetric n-gonal bipyramids:
Bipyramid
name
Digonal
bipyramid
Triangular
bipyramid
Square
bipyramid
Pentagonal
bipyramid
Hexagonal
bipyramid
... Apeirogonal
bipyramid
Polyhedron
image
Triangular bipyramid.png Square bipyramid.png Pentagonale bipiramide.png Hexagonale bipiramide.png ...
Spherical
tiling

image
Spherical digonal bipyramid.svg Spherical trigonal bipyramid.svg Spherical square bipyramid.svg Spherical pentagonal bipyramid.svg Spherical heptagonal bipyramid.svg Plane
tiling

image
Infinite bipyramid.svg
Face config. V2.4.4V3.4.4V4.4.4V5.4.4V6.4.4...V∞.4.4
Coxeter
diagram
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2x.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 6.pngCDel node.png...CDel node f1.pngCDel 2.pngCDel node f1.pngCDel infin.pngCDel node.png

See also

Related Research Articles

In geometry, a bipyramid, dipyramid, or double pyramid is a polyhedron formed by fusing two pyramids together base-to-base. The polygonal base of each pyramid must therefore be the same, and unless otherwise specified the base vertices are usually coplanar and a bipyramid is usually symmetric, meaning the two pyramids are mirror images across their common base plane. When each apex of the bipyramid is on a line perpendicular to the base and passing through its center, it is a right bipyramid; otherwise it is oblique. When the base is a regular polygon, the bipyramid is also called regular.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a strictly convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two solids with such a property: the first solids are the pyramids, cupolas. and a rotunda; some of the solids may be constructed by attaching with those previous solids, whereas others may not. These solids are named after mathematicians Norman Johnson and Victor Zalgaller.

In geometry, an octahedron is a polyhedron with eight faces. An octahedron can be considered as a square bipyramid. When the edges of a square bipyramid are all equal in length, it produces a regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. It is also an example of a deltahedron. An octahedron is the three-dimensional case of the more general concept of a cross polytope.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

<span class="mw-page-title-main">Triangular bipyramid</span> Two tetrahedra joined by one face

In geometry, the triangular bipyramid is the hexahedron with six triangular faces, constructed by attaching two tetrahedra face-to-face. The same shape is also called the triangular dipyramid or trigonal bipyramid. If these tetrahedra are regular, all faces of triangular bipyramid are equilateral. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Tetrakis hexahedron</span> Catalan solid with 24 faces

In geometry, a tetrakis hexahedron is a Catalan solid. Its dual is the truncated octahedron, an Archimedean solid.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Pentagonal bipyramid</span> Two pentagonal pyramids joined at the bases

In geometry, the pentagonal bipyramid is a polyhedron with 10 triangular faces. It is constructed by attaching two pentagonal pyramids to each of their bases. If the triangular faces are equilateral, the pentagonal bipyramid is an example of deltahedra, and of Johnson solid.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism or trigonal prism is a prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a right triangular prism. A right triangular prism may be both semiregular and uniform.

<span class="mw-page-title-main">Hexagonal prism</span> Prism with a 6-sided base

In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.

<span class="mw-page-title-main">Square antiprism</span>

In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an anticube.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

In geometry, a near-miss Johnson solid is a strictly convex polyhedron whose faces are close to being regular polygons but some or all of which are not precisely regular. Thus, it fails to meet the definition of a Johnson solid, a polyhedron whose faces are all regular, though it "can often be physically constructed without noticing the discrepancy" between its regular and irregular faces. The precise number of near-misses depends on how closely the faces of such a polyhedron are required to approximate regular polygons.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry and topology, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".