Disdyakis dodecahedron

Last updated
Disdyakis dodecahedron
Disdyakisdodecahedron.jpg
(rotating and 3D model)
Type Catalan solid
Conway notation mC
Coxeter diagram CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Face polygon DU11 facets.png
scalene triangle
Faces48
Edges72
Vertices26 = 6 + 8 + 12
Face configuration V4.6.8
Symmetry group Oh, B3, [4,3], *432
Dihedral angle 155° 4' 56"
Dual polyhedron Polyhedron great rhombi 6-8 max.png
truncated cuboctahedron
Propertiesconvex, face-transitive
Disdyakis 12 net.svg
net

In geometry, a disdyakis dodecahedron, (also hexoctahedron, [1] hexakis octahedron, octakis cube, octakis hexahedron, kisrhombic dodecahedron [2] ) or d48, is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons. It resembles an augmented rhombic dodecahedron. Replacing each face of the rhombic dodecahedron with a flat pyramid results in the Kleetope of the rhombic dodecahedron, which looks almost like the disdyakis dodecahedron, and is topologically equivalent to it. [a] The net of the rhombic dodecahedral pyramid also shares the same topology.

Contents

Symmetry

It has Oh octahedral symmetry. Its collective edges represent the reflection planes of the symmetry. It can also be seen in the corner and mid-edge triangulation of the regular cube and octahedron, and rhombic dodecahedron.

Disdyakis 12.png
Disdyakis
dodecahedron
Disdyakis 12 in deltoidal 24.png
Deltoidal
icositetrahedron
Disdyakis 12 in rhombic 12.png
Rhombic
dodecahedron
Disdyakis 12 in Platonic 6.png
Hexahedron
Disdyakis 12 in Platonic 8.png
Octahedron

The edges of a spherical disdyakis dodecahedron belong to 9 great circles. Three of them form a spherical octahedron (gray in the images below). The remaining six form three square hosohedra (red, green and blue in the images below). They all correspond to mirror planes - the former in dihedral [2,2], and the latter in tetrahedral [3,3] symmetry. A spherical disdyakis dodecahedron can be thought of as the barycentric subdivision of the spherical cube or of the spherical octahedron. [3]

Cartesian coordinates

Let .
Then the Cartesian coordinates for the vertices of a disdyakis dodecahedron centered at the origin are:

  permutations of (±a, 0, 0)  (vertices of an octahedron)
  permutations of (±b, ±b, 0)  (vertices of a cuboctahedron)
 c, ±c, ±c)  (vertices of a cube)

Dimensions

If its smallest edges have length a, its surface area and volume are

The faces are scalene triangles. Their angles are , and .

Orthogonal projections

The truncated cuboctahedron and its dual, the disdyakis dodecahedron can be drawn in a number of symmetric orthogonal projective orientations. Between a polyhedron and its dual, vertices and faces are swapped in positions, and edges are perpendicular.

Projective
symmetry
[4][3][2][2][2][2][2]+
Image Dual cube t012 B2.png Dual cube t012.png Dual cube t012 f4.png Dual cube t012 e46.png Dual cube t012 e48.png Dual cube t012 e68.png Dual cube t012 v.png
Dual
image
3-cube t012 B2.svg 3-cube t012.svg Cube t012 f4.png Cube t012 e46.png Cube t012 e48.png Cube t012 e68.png Cube t012 v.png
Conway polyhedron m3O.png Conway polyhedron m3C.png
Polyhedra similar to the disdyakis dodecahedron are duals to the Bowtie octahedron and cube, containing extra pairs triangular faces . [5]

The disdyakis dodecahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron.

Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.svg
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.svg
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.svg Uniform polyhedron-33-t2.svg Uniform polyhedron-33-t01.png Uniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg

It is a polyhedra in a sequence defined by the face configuration V4.6.2n. This group is special for having all even number of edges per vertex and form bisecting planes through the polyhedra and infinite lines in the plane, and continuing into the hyperbolic plane for any n  7.

With an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors.

Each face on these domains also corresponds to the fundamental domain of a symmetry group with order 2,3,n mirrors at each triangle face vertex.

*n32 symmetry mutation of omnitruncated tilings: 4.6.2n
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*32
[,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Figures Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png Truncated triheptagonal tiling.svg H2-8-3-omnitruncated.svg H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6. 4.6.24i4.6.18i4.6.12i4.6.6i
Duals Spherical hexagonal bipyramid.svg Spherical tetrakis hexahedron.svg Spherical disdyakis dodecahedron.svg Spherical disdyakis triacontahedron.svg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.V4.6.24iV4.6.18iV4.6.12iV4.6.6i
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolicParacomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Omnitruncated
figure
Spherical octagonal prism2.png
4.8.4
Uniform tiling 432-t012.png
4.8.6
Uniform tiling 44-t012.svg
4.8.8
H2-5-4-omnitruncated.svg
4.8.10
H2 tiling 246-7.png
4.8.12
H2 tiling 247-7.png
4.8.14
H2 tiling 248-7.png
4.8.16
H2 tiling 24i-7.png
4.8.
Omnitruncated
duals
Spherical octagonal bipyramid2.png
V4.8.4
Spherical disdyakis dodecahedron.svg
V4.8.6
1-uniform 2 dual.svg
V4.8.8
H2-5-4-kisrhombille.svg
V4.8.10
Hyperbolic domains 642.png
V4.8.12
Hyperbolic domains 742.png
V4.8.14
Hyperbolic domains 842.png
V4.8.16
H2checkers 24i.png
V4.8.

See also

Notes

  1. Despite their resemblance, no subset of the disdyakis dodecahedron's vertices forms a rhombic dodecahedron (see #Cartesian coordinates), and therefore, the former is not the Kleetope of the latter. The "rhombic" bases of the pyramids of the disdyakis dodecahedron are in fact not even planar; for example, the vertices of one such rhombus are (a, 0, 0), (0, a, 0), (c, c, c), (c, c, -c) (again, see #Cartesian coordinates for the values of a and c), with diagonal midpoints (√2)×(a, a, 0) and (c, c, 0), which do not coincide.

References

  1. "Keyword: "forms" | ClipArt ETC".
  2. Conway, Symmetries of things, p.284
  3. Langer, Joel C.; Singer, David A. (2010), "Reflections on the lemniscate of Bernoulli: the forty-eight faces of a mathematical gem", Milan Journal of Mathematics, 78 (2): 643–682, doi:10.1007/s00032-010-0124-5, MR   2781856
  4. Koca, Mehmet; Ozdes Koca, Nazife; Koc, Ramazon (2010). "Catalan Solids Derived From 3D-Root Systems and Quaternions". Journal of Mathematical Physics. 51 (4). arXiv: 0908.3272 . doi:10.1063/1.3356985.
  5. Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons Craig S. Kaplan