Symmetrohedron

Last updated
The symmetrohedron I(*;2;3;e) has regular pentagons and hexagons, and trapezoidal gap faces. Symmetrohedron i-0-2-3-e.png
The symmetrohedron I(*;2;3;e) has regular pentagons and hexagons, and trapezoidal gap faces.
A pentahexagonal symmetrohedron with pyritohedral symmetry, order 24 Pyritohedral near-miss johnson.png
A pentahexagonal symmetrohedron with pyritohedral symmetry, order 24

In geometry, a symmetrohedron is a high-symmetry polyhedron containing convex regular polygons on symmetry axes with gaps on the convex hull filled by irregular polygons. The name was coined by Craig S. Kaplan and George W. Hart. [1]

Contents

The trivial cases are the Platonic solids, Archimedean solids with all regular polygons. A first class is called bowtie which contain pairs of trapezoidal faces. A second class has kite faces. Another class are called LCM symmetrohedra.

Symbolic notation

Each symmetrohedron is described by a symbolic expression G(l; m; n; α). G represents the symmetry group (T,O,I). The values l, m and n are the multipliers ; a multiplier of m will cause a regular km-gon to be placed at every k-fold axis of G. In the notation, the axis degrees are assumed to be sorted in descending order, 5,3,2 for I, 4,3,2 for O, and 3,3,2 for T . We also allow two special values for the multipliers: *, indicating that no polygons should be placed on the given axes, and 0, indicating that the final solid must have a vertex (a zero-sided polygon) on the axes. We require that one or two of l, m, and n be positive integers. The final parameter, α, controls the relative sizes of the non-degenerate axis-gons.

Conway polyhedron notation is another way to describe these polyhedra, starting with a regular form, and applying prefix operators. The notation doesn't imply which faces should be made regular beyond the uniform solutions of the Archimedean solids.

Duals
I(*;2;3;e)Pyritohedral
Dual Symmetrohedron I(*;2;3;e).svg Symmetrohedron Pyrito.svg

1-generator point

These symmetrohedra are produced by a single generator point within a fundamental domains, reflective symmetry across domain boundaries. Edges exist perpendicular to each triangle boundary, and regular faces exist centered on each of the 3 triangle corners.

The symmetrohedra can be extended to euclidean tilings, using the symmetry of the regular square tiling, and dual pairs of triangular and hexagonal tilings. Tilings, Q is square symmetry p4m, H is hexagonal symmetry p6m.

Coxeter-Dynkin diagrams exist for these uniform polyhedron solutions, representing the position of the generator point within the fundamental domain. Each node represents one of 3 mirrors on the edge of the triangle. A mirror node is ringed if the generator point is active, off the mirror, and creates new edges between the point and its mirror image.

DomainEdges Tetrahedral (3 3 2) Octahedral (4 3 2) Icosahedral (5 3 2)Triangular (6 3 2)Square (4 4 2)
SymbolImageSymbolImageSymbolImageSymbolImageDualSymbolImageDual
Symmetrohedron domain 1-0-0-e.png 1T(1;*;*;e)
T, CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png C, O(1;*;*;e)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.svg I(1;*;*;e)
D, CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-53-t0.svg H(1;*;*;e)
H, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.svg Uniform tiling 63-t2.svg Q(1;*;*;e)
Q, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg Uniform tiling 44-t2.svg
Symmetrohedron domain 0-1-0-e.png 1T(*;1;*;e)
dT, CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t2.png O(*;1;*;e)
O, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.svg I(*;1;*;e)
I, CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-53-t2.svg H(*;1;*;e)
dH, CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t2.svg Uniform tiling 63-t0.svg Q(*;1;*;e)
dQ, CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.svg Uniform tiling 44-t0.svg
Symmetrohedron domain 1-1-0-e.png 2T(1;1;*;e)
aT, CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.svg O(1;1;*;e)
aC, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.svg I(1;1;*;e)
aD, CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-53-t1.svg H(1;1;*;e)
aH, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.svg Symmetric Tiling Dual 2 Rhombille.svg Q(1;1;*;e)
aQ, CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.svg Symmetric Tiling Dual 3 Alt Square.svg
Symmetrohedron domain 2-1-0-e.png 3T(2;1;*;e)
tT, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png O(2;1;*;e)
tC, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.svg I(2;1;*;e)
tD, CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-53-t01.svg H(2;1;*;e)
tH, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t01.svg Symmetric Tiling Dual 4 Kisdeltille.svg Q(2;1;*;e)
tQ, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.svg Symmetric Tiling Dual 5 Kisquadrille I.svg
Symmetrohedron domain 1-2-0-e.png 3T(1;2;*;e)
dtT, CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t12.png O(1;2;*;e)
tO, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.svg I(1;2;*;e)
tI, CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-53-t12.svg H(1;2;*;e)
dtH, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t12.svg Symmetric Tiling Dual 6 Hexakis Hexagonal.svg Q(1;2;*;e)
dtQ, CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg Symmetric Tiling Dual 7 Kisquadrille II.svg
Symmetrohedron domain 1-1-0-1.png 4T(1;1;*;1)
eT, CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png O(1;1;*;1)
eC, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png I(1;1;*;1)
eD, CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-53-t02.png H(1;1;*;1)
eH, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t02.svg Symmetric Tiling Dual 8 Deltoidal.svg Q(1;1;*;1)
eQ, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.svg Symmetric Tiling Dual 9 Ortho Square.svg
Symmetrohedron domain 2-2-0-e.png 6T(2;2;*;e)
bT, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png O(2;2;*;e)
bC, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png I(2;2;*;e)
bD, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-53-t012.png H(2;2;*;e)
bH, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t012.svg Symmetric Tiling Dual 10 Kisrhombille.svg Q(2;2;*;e)
bQ, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.svg Symmetric Tiling Dual 11 Kisquadrille III.svg

2-generator points

DomainEdges Tetrahedral (3 3 2) Octahedral (4 3 2) Icosahedral (5 3 2)Triangular (6 3 2)Square (4 4 2)
SymbolImageSymbolImageSymbolImageSymbolImageDualSymbolImageDual
Symmetrohedron domain 1-2-0-b2.png 6T(1;2;*;[2])
atT
Rectified truncated tetrahedron.png O(1;2;*;[2])
atO
Rectified truncated octahedron.png I(1;2;*;[2])
atI
Rectified truncated icosahedron.png H(1;2;*;[2])
atΔ
Conway tiling atdH.png Symmetric Tiling Dual 12 Rhombille II.svg Q(1;2;*;[2])
Q(2;1;*;[2])
atQ
Diagonal-square tiling truncation2.svg Symmetric Tiling Dual 14 Join Kisquadrille.svg
Symmetrohedron domain 2-1-0-b2.png 6O(2;1;*;[2])
atC
Rectified truncated cube.png I(2;1;*;[2])
atD
Rectified truncated dodecahedron.png H(2;1;*;[2])
atH
Conway tiling atH.png Symmetric Tiling Dual 13 Join Kisdeltille.svg
Symmetrohedron domain 3-0-0-b2.png 7T(3;*;*;[2])
T(*;3;*;[2])
dKdT
Conway polyhedron dKT.png O(3;*;*;[2])
dKdC
Conway polyhedron dKO.png I(3;*;*;[2])
dKdD
Conway polyhedron dKI.png H(3;*;*;[2])
dKdH
Conway tiling dKdH.png Symmetric Tiling 16 Join K(1).svg Q(3;*;*;[2])
Q(*;3;*;[2])
dKQ
Square lattice with dodecagons.svg Symmetric Tiling Dual 17 OT.svg
Symmetrohedron domain 0-3-0-b2.png 7O(*;3;*;[2])
dKdO
Conway polyhedron dKC.png I(*;3;*;[2])
dKdI
Conway polyhedron dKD.png H(*;3;*;[2])
dKdΔ
Conway tiling dKH.png Symmetric Tiling Dual 15 Rhomb(1).svg
Symmetrohedron domain 2-3-s-a.png 8T(2;3;*;α)
T(3;2;*;α)
dM0T
Conway polyhedra M0T.png O(2;3;*;α)
dM0dO
Conway polyhedra M0C.png I(2;3;*;α)
dM0dI
Conway polyhedra M0D.png H(2;3;*;α)
dM0
Conway tiling dM0H.png Symmetric Tiling Dual 18 Rhomb(2).svg Q(2;3;*;α)
Q(3;2;*;α)
dM0Q
Diagonal-square tiling truncation3.svg Symmetric Tiling Dual 19 Join KQ(2).svg
Symmetrohedron domain 3-2-s-a.png 8O(3;2;*;α)
dM0dC
Conway polyhedra M0O.png I(3;2;*;α)
dM0dD
Conway polyhedra M0I.png H(3;2;*;α)
dM0dH
Conway tiling dM0dH.png Symmetric Tiling Dual 18 Join K(2).svg
Symmetrohedron domain 2-4-0-e.png 9T(2;4;*;e)
T(4;2;*;e)
ttT
Conway polyhedron ttT.png O(2;4;*;e)
ttO
Conway polyhedron ttO.png I(2;4;*;e)
ttI
Conway polyhedron ttI.png H(2;4;*;e)
ttΔ
Conway tiling ttdH.png Symmetric Tiling Dual 20 Kisdeltille(2).svg Q(4;2;*;e)
Q(2;4;*;e)
ttQ
Square lattice with 16-gons.svg Symmetric Tiling Dual 22 Join KQ(3).svg
Symmetrohedron domain 4-2-0-e.png 9O(4;2;*;e)
ttC
Conway polyhedron ttC.png I(4;2;*;e)
ttD
Conway polyhedron ttD.png H(4;2;*;e)
ttH
Conway tiling ttH.png Symmetric Tiling Dual 21 Join K(3).svg
Symmetrohedron domain 1-2-0-1.png 7T(2;1;*;1)
T(1;2;*;1)
dM3T
Conway polyhedron dM3T.png O(1;2;*;1)
dM3O
Conway polyhedron dM3O.png I(1;2;*;1)
dM3I
Conway polyhedron dM3I.png H(1;2;*;1)
dM3Δ
Conway tiling dM3dH.png Symmetric Tiling Dual 23 Rhomb(4).svg Q(2;1;*;1)
Q(1;2;*;1)
dM3dQ
Square-octagon-bowtie tiling.svg Symmetric Tiling Dual 25 Join KQ(4).svg
Symmetrohedron domain 2-1-0-1.png 7O(2;1;*;1)
dM3C
Conway polyhedron dM3C.png I(2;1;*;1)
dM3D
Conway polyhedron dM3D.png H(2;1;*;1)
dM3H
Conway tiling dM3H.png Symmetric Tiling Dual 24 Join K(4).svg
Symmetrohedron domain 2-3-0-e.png 9T(2;3;*;e)
T(3;2;*;e)
dm3T
Conway polyhedron b3T.gif O(2;3;*;e)
dm3C
Conway polyhedron b3O.png I(2;3;*;e)
dm3D
Conway polyhedron b3I.png H(2;3;*;e)
dm3H
Conway tiling b3dH.png Symmetric Tiling Dual 27 Join K(5).svg Q(2;3;*;e)
Q(3;2;*;e)
dm3Q
12gon-octagon bowtie.svg Symmetric Tiling Dual 28 Join KQ(5).svg
Symmetrohedron domain 3-2-0-e.png 9O(3;2;*;e)
dm3O
Conway polyhedron b3C.png I(3;2;*;e)
dm3I
Conway polyhedron b3D.png H(3;2;*;e)
dm3Δ
Conway tiling b3H.png Symmetric Tiling Dual 26 Rhomb(5).svg
Symmetrohedron domain 0-2-3-e.png 10T(2;*;3;e)
T(*;2;3;e)
dXdT

3.4.6.6

Conway dual cross tetrahedron.png O(*;2;3;e)
dXdO
Conway dual cross cube.png I(*;2;3;e)
dXdI
Symmetrohedron i-0-2-3-e.png H(*;2;3;e)
dXdΔ
Conway tiling dXH.png Symmetric Tiling Dual 29 Rhomb(6).svg Q(2;*;3;e)
Q(*;2;3;e)
dXdQ
Octagon-hexagon-square-trap tiling.svg Symmetric Tiling Dual 31.svg
Symmetrohedron domain 2-0-3-e.png 10O(2;*;3;e)
dXdC

3.4.6.8

Conway dual cross octahedron.png I(2;*;3;e)
dXdD

3.4.6.10

Conway dual crossed icosahedron.png H(2;*;3;e)
dXdH

3.4.6.12

Conway dXdH.png Symmetric Tiling Dual 30 3D.svg

3-generator points

DomainEdges Tetrahedral (3 3 2) Octahedral (4 3 2) Icosahedral (5 3 2)Triangular (6 3 2)Square (4 4 2)
SymbolImageSymbolImageSymbolImageSymbolImageDualSymbolImageDual
Symmetrohedron domain 0-2-s-b1.png 6T(2;0;*;[1]) Conway polyhedron dL0T.png O(0;2;*;[1])
dL0dO
Conway polyhedron dL0C.png I(0;2;*;[1])
dL0dI
Conway polyhedron dL0D.png H(0;2;*;[1])
dL0H
Conway tiling dL0H.png Symmetric Tiling Dual 32 Rhomb(7).svg Q(2;0;*;[1])
Q(0;2;*;[1])
dL0dQ
Diagonalkite-square tiling truncation2.svg Symmetric Tiling Dual 34 Join KQ(7).svg
Symmetrohedron domain 2-0-s-b1.png 6O(2;0;*;[1])
dL0dC
Conway polyhedron dL0O.png I(2;0;*;[1])
dL0dD
Conway polyhedron dL0I.png H(2;0;*;[1])
dL0Δ
Conway tiling dL0dH.png Symmetric Tiling Dual 33 Join K(6).svg
Symmetrohedron domain 0-3-s-b2.png 7T(3;0;*;[2]) Conway polyhedron dLT.png O(0;3;*;[2])
dLdO
Conway polyhedron dLC.png I(0;3;*;[2])
dLdI
Conway polyhedron dLD.png H(0;3;*;[2])
dLH
Conway tiling dLH.png Symmetric Tiling Dual 35 Rhomb(8).svg Q(2;0;*;[1])
Q(0;2;*;[2])
dLQ
Octagon-rhomb tiling.svg Symmetric Tiling Dual 37 Join KQ(8).svg
Symmetrohedron domain 3-0-s-b2.png 7O(3;0;*;[2])
dLdC
Conway polyhedron dLO.png I(3;0;*;[2])
dLdD
Conway polyhedron dLI.png H(3;0;*;[2])
dLΔ
Conway tiling dLdH.png Symmetric Tiling Dual 36 Join K(7).svg
Symmetrohedron domain 2-2-s-a.png 12T(2;2;*;a)
amT
Conway polyhedron amT.png O(2;2;*;a)
amC
Conway polyhedron amC.png I(2;2;*;a)
amD
Conway polyhedron amD.png H(2;2;*;a)
amH
Conway tiling amH.png Symmetric Tiling Dual 38 Join Kisrhombille.svg Q(2;2;*;a)
amQ
Diagonal-square tiling truncation2.svg Symmetric Tiling Dual 14 Join Kisquadrille.svg

See also

Related Research Articles

<span class="mw-page-title-main">Archimedean solid</span> Polyhedra in which all vertices are the same

In geometry, an Archimedean solid is one of 13 convex polyhedra whose faces are regular polygons and whose vertices are all symmetric to each other. They were first enumerated by Archimedes. They belong to the class of convex uniform polyhedra, the convex polyhedra with regular faces and symmetric vertices, which is divided into the Archimedean solids, the five Platonic solids, and the two infinite families of prisms and antiprisms. The pseudorhombicuboctahedron is an extra polyhedron with regular faces and congruent vertices, but it is not generally counted as an Archimedean solid because it is not vertex-transitive. An even larger class than the convex uniform polyhedra is the Johnson solids, whose regular polygonal faces do not need to meet in identical vertices.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a strictly convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two solids with such a property: the first solids are the pyramids, cupolas. and a rotunda; some of the solids may be constructed by attaching with those previous solids, whereas others may not. These solids are named after mathematicians Norman Johnson and Victor Zalgaller.

In geometry, an octahedron is a polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. Many types of irregular octahedra also exist, including both convex and non-convex shapes.

<span class="mw-page-title-main">Truncated tetrahedron</span> Archimedean solid with 8 faces

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges. It can be constructed by truncating all 4 vertices of a regular tetrahedron.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Trapezohedron</span> Polyhedron made of congruent kites arranged radially

In geometry, an n-gonaltrapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron, is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites.

<span class="mw-page-title-main">Triakis octahedron</span> Catalan solid with 24 faces

In geometry, a triakis octahedron is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated cube.

<span class="mw-page-title-main">Disdyakis triacontahedron</span> Catalan solid with 120 faces

In geometry, a disdyakis triacontahedron, hexakis icosahedron, decakis dodecahedron or kisrhombic triacontahedron is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is face-uniform but with irregular face polygons. It slightly resembles an inflated rhombic triacontahedron: if one replaces each face of the rhombic triacontahedron with a single vertex and four triangles in a regular fashion, one ends up with a disdyakis triacontahedron. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron. It is also the barycentric subdivision of the regular dodecahedron and icosahedron. It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.

<span class="mw-page-title-main">Vertex configuration</span> Notation for a polyhedrons vertex figure

In geometry, a vertex configuration is a shorthand notation for representing the vertex figure of a polyhedron or tiling as the sequence of faces around a vertex. For uniform polyhedra there is only one vertex type and therefore the vertex configuration fully defines the polyhedron.

In geometry, a near-miss Johnson solid is a strictly convex polyhedron whose faces are close to being regular polygons but some or all of which are not precisely regular. Thus, it fails to meet the definition of a Johnson solid, a polyhedron whose faces are all regular, though it "can often be physically constructed without noticing the discrepancy" between its regular and irregular faces. The precise number of near-misses depends on how closely the faces of such a polyhedron are required to approximate regular polygons.

<span class="mw-page-title-main">Truncation (geometry)</span> Operation that cuts polytope vertices, creating a new facet in place of each vertex

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry and topology, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

References