# Truncated cube

Last updated
Truncated cube

Type Archimedean solid
Uniform polyhedron
Elements F = 14, E = 36, V = 24 (χ = 2)
Faces by sides8{3}+6{8}
Conway notation tC
Schläfli symbols t{4,3}
t0,1{4,3}
Wythoff symbol 2 3 | 4
Coxeter diagram
Symmetry group Oh, B3, [4,3], (*432), order 48
Rotation group O, [4,3]+, (432), order 24
Dihedral angle 3-8: 125°15′51″
8-8: 90°
References U 09, C 21, W 8
PropertiesSemiregular convex

Colored faces

3.8.8
(Vertex figure)

Triakis octahedron
(dual polyhedron)

Net

In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices.

## Contents

If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths 2 and 2 + 2.

## Area and volume

The area A and the volume V of a truncated cube of edge length a are:

{\displaystyle {\begin{aligned}A&=2\left(6+6{\sqrt {2}}+{\sqrt {3}}\right)a^{2}&&\approx 32.434\,6644a^{2}\\V&={\frac {21+14{\sqrt {2}}}{3}}a^{3}&&\approx 13.599\,6633a^{3}.\end{aligned}}}

## Orthogonal projections

The truncated cube has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces: triangles, and octagons. The last two correspond to the B2 and A2 Coxeter planes.

Orthogonal projections
Centered byVertexEdge
3-8
Edge
8-8
Face
Octagon
Face
Triangle
Solid
Wireframe
Dual
Projective
symmetry
[2][2][2][4][6]

## Spherical tiling

The truncated cube can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

 Orthographic projection Stereographic projections octagon-centered triangle-centered

## Cartesian coordinates

Cartesian coordinates for the vertices of a truncated hexahedron centered at the origin with edge length 2ξ are all the permutations of

ξ, ±1, ±1),

where ξ = 2  1.

The parameter ξ can be varied between ±1. A value of 1 produces a cube, 0 produces a cuboctahedron, and negative values produces self-intersecting octagrammic faces.

If the self-intersected portions of the octagrams are removed, leaving squares, and truncating the triangles into hexagons, truncated octahedra are produced, and the sequence ends with the central squares being reduced to a point, and creating an octahedron.

## Dissection

The truncated cube can be dissected into a central cube, with six square cupolae around each of the cube's faces, and 8 regular tetrahedra in the corners. This dissection can also be seen within the runcic cubic honeycomb, with cube, tetrahedron, and rhombicuboctahedron cells.

This dissection can be used to create a Stewart toroid with all regular faces by removing two square cupolae and the central cube. This excavated cube has 16 triangles, 12 squares, and 4 octagons. [1] [2]

## Vertex arrangement

It shares the vertex arrangement with three nonconvex uniform polyhedra:

 Truncated cube Nonconvex great rhombicuboctahedron Great cubicuboctahedron Great rhombihexahedron

The truncated cube is related to other polyhedra and tilings in symmetry.

The truncated cube is one of a family of uniform polyhedra related to the cube and regular octahedron.

Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}

=

=

=
=
or
=
or
=

Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35

### Symmetry mutations

This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry, and a series of polyhedra and tilings n.8.8.

*n32 symmetry mutation of truncated spherical tilings: t{n,3}
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Truncated
figures
Symbol t{2,3} t{3,3} t{4,3} t{5,3} t{6,3} t{7,3} t{8,3} t{,3}
Triakis
figures
Config. V3.4.4 V3.6.6 V3.8.8 V3.10.10 V3.12.12 V3.14.14 V3.16.16V3.∞.∞
*n42 symmetry mutation of truncated tilings: n.8.8
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolicParacompact
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Truncated
figures
Config. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 .8.8
n-kis
figures
Config. V2.8.8 V3.8.8 V4.8.8 V5.8.8V6.8.8V7.8.8V8.8.8V.8.8

### Alternated truncation

Tetrahedron, its edge truncation, and the truncated cube

Truncating alternating vertices of the cube gives the chamfered tetrahedron, i.e. the edge truncation of the tetrahedron.

The truncated triangular trapezohedron is another polyhedron which can be formed from cube edge truncation.

The truncated cube , is second in a sequence of truncated hypercubes:

 Image Name Coxeter diagram Vertex figure ... Octagon Truncated cube Truncated tesseract Truncated 5-cube Truncated 6-cube Truncated 7-cube Truncated 8-cube ( )v( ) ( )v{ } ( )v{3} ( )v{3,3} ( )v{3,3,3} ( )v{3,3,3,3} ( )v{3,3,3,3,3}

## Truncated cubical graph

Truncated cubical graph
4-fold symmetry Schlegel diagram
Vertices 24
Edges 36
Automorphisms 48
Chromatic number 3
Properties Cubic, Hamiltonian, regular, zero-symmetric
Table of graphs and parameters

In the mathematical field of graph theory, a truncated cubical graph is the graph of vertices and edges of the truncated cube, one of the Archimedean solids. It has 24 vertices and 36 edges, and is a cubic Archimedean graph. [3]

 Orthographic

## Related Research Articles

In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids, excluding the prisms and antiprisms, and excluding the pseudorhombicuboctahedron. They are a subset of the Johnson solids, whose regular polygonal faces do not need to meet in identical vertices.

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is the only radially equilateral convex polyhedron.

In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex.

In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnson solid is the square-based pyramid with equilateral sides (J1); it has 1 square face and 4 triangular faces. Some authors require that the solid not be uniform before they refer to it as a “Johnson solid”.

In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is an Archimedean solid with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at each one. The polyhedron has octahedral symmetry, like the cube and octahedron. Its dual is called the deltoidal icositetrahedron or trapezoidal icositetrahedron, although its faces are not really true trapezoids.

In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices.

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges. It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length.

In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

In geometry, the truncated icosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

In geometry, a tetrakis hexahedron is a Catalan solid. Its dual is the truncated octahedron, an Archimedean solid.

In geometry, a disdyakis dodecahedron,, is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons. It resembles an augmented rhombic dodecahedron. Replacing each face of the rhombic dodecahedron with a flat pyramid creates a polyhedron that looks almost like the disdyakis dodecahedron, and is topologically equivalent to it. More formally, the disdyakis dodecahedron is the Kleetope of the rhombic dodecahedron. The net of the rhombic dodecahedral pyramid also shares the same topology.

In geometry, the elongated triangular orthobicupola or cantellated triangular prism is one of the Johnson solids (J35). As the name suggests, it can be constructed by elongating a triangular orthobicupola (J27) by inserting a hexagonal prism between its two halves. The resulting solid is superficially similar to the rhombicuboctahedron, with the difference that it has threefold rotational symmetry about its axis instead of fourfold symmetry.

In Euclidean geometry, rectification, also known as critical truncation or complete-truncation is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the rectified facets of the original polytope.

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

In geometry, a truncated cuboctahedral prism or great rhombicuboctahedral prism is a convex uniform polychoron.

In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion, moving faces apart and outward, but also maintains the original vertices. For polyhedra, this operation adds a new hexagonal face in place of each original edge.

## References

1. B. M. Stewart, Adventures Among the Toroids (1970) ISBN   978-0-686-11936-4
2. Read, R. C.; Wilson, R. J. (1998), An Atlas of Graphs, Oxford University Press, p. 269
• Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN   0-486-23729-X. (Section 3-9)
• Cromwell, P. Polyhedra, CUP hbk (1997), pbk. (1999). Ch.2 p. 79-86 Archimedean solids