Tesseract | Truncated tesseract | Rectified tesseract | Bitruncated tesseract |
Schlegel diagrams centered on [4,3] (cells visible at [3,3]) | |||
16-cell | Truncated 16-cell | Rectified 16-cell (24-cell) | Bitruncated tesseract |
Schlegel diagrams centered on [3,3] (cells visible at [4,3]) |
In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract.
There are three truncations, including a bitruncation, and a tritruncation, which creates the truncated 16-cell.
Truncated tesseract | ||
---|---|---|
Schlegel diagram (tetrahedron cells visible) | ||
Type | Uniform 4-polytope | |
Schläfli symbol | t{4,3,3} | |
Coxeter diagrams | ||
Cells | 24 | 8 3.8.8 16 3.3.3 |
Faces | 88 | 64 {3} 24 {8} |
Edges | 128 | |
Vertices | 64 | |
Vertex figure | ( )v{3} | |
Dual | Tetrakis 16-cell | |
Symmetry group | B4, [4,3,3], order 384 | |
Properties | convex | |
Uniform index | 12 13 14 |
The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra.
The truncated tesseract may be constructed by truncating the vertices of the tesseract at of the edge length. A regular tetrahedron is formed at each truncated vertex.
The Cartesian coordinates of the vertices of a truncated tesseract having edge length 2 is given by all permutations of:
In the truncated cube first parallel projection of the truncated tesseract into 3-dimensional space, the image is laid out as follows:
Coxeter plane | B4 | B3 / D4 / A2 | B2 / D3 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | F4 | A3 | |
Graph | |||
Dihedral symmetry | [12/3] | [4] |
A polyhedral net | Truncated tesseract projected onto the 3-sphere with a stereographic projection into 3-space. |
The truncated tesseract , is third in a sequence of truncated hypercubes:
Image | ... | |||||||
---|---|---|---|---|---|---|---|---|
Name | Octagon | Truncated cube | Truncated tesseract | Truncated 5-cube | Truncated 6-cube | Truncated 7-cube | Truncated 8-cube | |
Coxeter diagram | ||||||||
Vertex figure | ( )v( ) | ( )v{ } | ( )v{3} | ( )v{3,3} | ( )v{3,3,3} | ( )v{3,3,3,3} | ( )v{3,3,3,3,3} |
Bitruncated tesseract | ||
---|---|---|
Two Schlegel diagrams, centered on truncated tetrahedral or truncated octahedral cells, with alternate cell types hidden. | ||
Type | Uniform 4-polytope | |
Schläfli symbol | 2t{4,3,3} 2t{3,31,1} h2,3{4,3,3} | |
Coxeter diagrams | = | |
Cells | 24 | 8 4.6.6 16 3.6.6 |
Faces | 120 | 32 {3} 24 {4} 64 {6} |
Edges | 192 | |
Vertices | 96 | |
Vertex figure | Digonal disphenoid | |
Symmetry group | B4, [3,3,4], order 384 D4, [31,1,1], order 192 | |
Properties | convex, vertex-transitive | |
Uniform index | 15 16 17 |
The bitruncated tesseract, bitruncated 16-cell, or tesseractihexadecachoron is constructed by a bitruncation operation applied to the tesseract. It can also be called a runcicantic tesseract with half the vertices of a runcicantellated tesseract with a construction.
A tesseract is bitruncated by truncating its cells beyond their midpoints, turning the eight cubes into eight truncated octahedra. These still share their square faces, but the hexagonal faces form truncated tetrahedra which share their triangular faces with each other.
The Cartesian coordinates of the vertices of a bitruncated tesseract having edge length 2 is given by all permutations of:
The truncated octahedra are connected to each other via their square faces, and to the truncated tetrahedra via their hexagonal faces. The truncated tetrahedra are connected to each other via their triangular faces.
Coxeter plane | B4 | B3 / D4 / A2 | B2 / D3 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | F4 | A3 | |
Graph | |||
Dihedral symmetry | [12/3] | [4] |
The truncated-octahedron-first projection of the bitruncated tesseract into 3D space has a truncated cubical envelope. Two of the truncated octahedral cells project onto a truncated octahedron inscribed in this envelope, with the square faces touching the centers of the octahedral faces. The 6 octahedral faces are the images of the remaining 6 truncated octahedral cells. The remaining gap between the inscribed truncated octahedron and the envelope are filled by 8 flattened truncated tetrahedra, each of which is the image of a pair of truncated tetrahedral cells.
Colored transparently with pink triangles, blue squares, and gray hexagons |
The bitruncated tesseract is second in a sequence of bitruncated hypercubes:
Image | ... | ||||||
---|---|---|---|---|---|---|---|
Name | Bitruncated cube | Bitruncated tesseract | Bitruncated 5-cube | Bitruncated 6-cube | Bitruncated 7-cube | Bitruncated 8-cube | |
Coxeter | |||||||
Vertex figure | ( )v{ } | { }v{ } | { }v{3} | { }v{3,3} | { }v{3,3,3} | { }v{3,3,3,3} |
Truncated 16-cell Cantic tesseract | ||
---|---|---|
Schlegel diagram (octahedron cells visible) | ||
Type | Uniform 4-polytope | |
Schläfli symbol | t{4,3,3} t{3,31,1} h2{4,3,3} | |
Coxeter diagrams | = | |
Cells | 24 | 8 3.3.3.3 16 3.6.6 |
Faces | 96 | 64 {3} 32 {6} |
Edges | 120 | |
Vertices | 48 | |
Vertex figure | square pyramid | |
Dual | Hexakis tesseract | |
Coxeter groups | B4 [3,3,4], order 384 D4 [31,1,1], order 192 | |
Properties | convex | |
Uniform index | 16 17 18 |
The truncated 16-cell, truncated hexadecachoron, cantic tesseract which is bounded by 24 cells: 8 regular octahedra, and 16 truncated tetrahedra. It has half the vertices of a cantellated tesseract with construction .
It is related to, but not to be confused with, the 24-cell, which is a regular 4-polytope bounded by 24 regular octahedra.
The truncated 16-cell may be constructed from the 16-cell by truncating its vertices at 1/3 of the edge length. This results in the 16 truncated tetrahedral cells, and introduces the 8 octahedra (vertex figures).
(Truncating a 16-cell at 1/2 of the edge length results in the 24-cell, which has a greater degree of symmetry because the truncated cells become identical with the vertex figures.)
The Cartesian coordinates of the vertices of a truncated 16-cell having edge length √2 are given by all permutations, and sign combinations of
An alternate construction begins with a demitesseract with vertex coordinates (±3,±3,±3,±3), having an even number of each sign, and truncates it to obtain the permutations of
The truncated tetrahedra are joined to each other via their hexagonal faces. The octahedra are joined to the truncated tetrahedra via their triangular faces.
The octahedron-first parallel projection of the truncated 16-cell into 3-dimensional space has the following structure:
This layout of cells in projection is analogous to the layout of faces in the projection of the truncated octahedron into 2-dimensional space. Hence, the truncated 16-cell may be thought of as the 4-dimensional analogue of the truncated octahedron.
The truncated tetrahedron first parallel projection of the truncated 16-cell into 3-dimensional space has the following structure:
Coxeter plane | B4 | B3 / D4 / A2 | B2 / D3 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | F4 | A3 | |
Graph | |||
Dihedral symmetry | [12/3] | [4] |
Net | Stereographic projection (centered on truncated tetrahedron) |
A truncated 16-cell, as a cantic 4-cube, is related to the dimensional family of cantic n-cubes:
n | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|
Symmetry [1+,4,3n-2] | [1+,4,3] = [3,3] | [1+,4,32] = [3,31,1] | [1+,4,33] = [3,32,1] | [1+,4,34] = [3,33,1] | [1+,4,35] = [3,34,1] | [1+,4,36] = [3,35,1] |
Cantic figure | ||||||
Coxeter | = | = | = | = | = | = |
Schläfli | h2{4,3} | h2{4,32} | h2{4,33} | h2{4,34} | h2{4,35} | h2{4,36} |
D4 uniform polychora | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
{3,31,1} h{4,3,3} | 2r{3,31,1} h3{4,3,3} | t{3,31,1} h2{4,3,3} | 2t{3,31,1} h2,3{4,3,3} | r{3,31,1} {31,1,1}={3,4,3} | rr{3,31,1} r{31,1,1}=r{3,4,3} | tr{3,31,1} t{31,1,1}=t{3,4,3} | sr{3,31,1} s{31,1,1}=s{3,4,3} |
B4 symmetry polytopes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name | tesseract | rectified tesseract | truncated tesseract | cantellated tesseract | runcinated tesseract | bitruncated tesseract | cantitruncated tesseract | runcitruncated tesseract | omnitruncated tesseract | ||
Coxeter diagram | = | = | |||||||||
Schläfli symbol | {4,3,3} | t1{4,3,3} r{4,3,3} | t0,1{4,3,3} t{4,3,3} | t0,2{4,3,3} rr{4,3,3} | t0,3{4,3,3} | t1,2{4,3,3} 2t{4,3,3} | t0,1,2{4,3,3} tr{4,3,3} | t0,1,3{4,3,3} | t0,1,2,3{4,3,3} | ||
Schlegel diagram | |||||||||||
B4 | |||||||||||
Name | 16-cell | rectified 16-cell | truncated 16-cell | cantellated 16-cell | runcinated 16-cell | bitruncated 16-cell | cantitruncated 16-cell | runcitruncated 16-cell | omnitruncated 16-cell | ||
Coxeter diagram | = | = | = | = | = | = | |||||
Schläfli symbol | {3,3,4} | t1{3,3,4} r{3,3,4} | t0,1{3,3,4} t{3,3,4} | t0,2{3,3,4} rr{3,3,4} | t0,3{3,3,4} | t1,2{3,3,4} 2t{3,3,4} | t0,1,2{3,3,4} tr{3,3,4} | t0,1,3{3,3,4} | t0,1,2,3{3,3,4} | ||
Schlegel diagram | |||||||||||
B4 |
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.
In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.
In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,4}. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid [sic?].
In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.
In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.
In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In total it has 30 triangle faces, 30 edges, and 10 vertices. Each vertex is surrounded by 3 octahedra and 2 tetrahedra; the vertex figure is a triangular prism.
In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.
In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.
In geometry, a truncated 24-cell is a uniform 4-polytope formed as the truncation of the regular 24-cell.
In geometry, the rectified tesseract, rectified 8-cell is a uniform 4-polytope bounded by 24 cells: 8 cuboctahedra, and 16 tetrahedra. It has half the vertices of a runcinated tesseract, with its construction, called a runcic tesseract.
In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.
In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.
In four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation of the regular 24-cell.
In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.
In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.
In five-dimensional geometry, a truncated 5-simplex is a convex uniform 5-polytope, being a truncation of the regular 5-simplex.