Bitruncation

Last updated
A bitruncated cube is a truncated octahedron. Birectified cube sequence.png
A bitruncated cube is a truncated octahedron.
A bitruncated cubic honeycomb - Cubic cells become orange truncated octahedra, and vertices are replaced by blue truncated octahedra. Bitruncated cubic honeycomb.png
A bitruncated cubic honeycomb - Cubic cells become orange truncated octahedra, and vertices are replaced by blue truncated octahedra.

In geometry, a bitruncation is an operation on regular polytopes. It represents a truncation beyond rectification.[ citation needed ] The original edges are lost completely and the original faces remain as smaller copies of themselves.

Contents

Bitruncated regular polytopes can be represented by an extended Schläfli symbol notation t1,2{p,q,...} or 2t{p,q,...}.

In regular polyhedra and tilings

For regular polyhedra (i.e. regular 3-polytopes), a bitruncated form is the truncated dual. For example, a bitruncated cube is a truncated octahedron.

In regular 4-polytopes and honeycombs

For a regular 4-polytope, a bitruncated form is a dual-symmetric operator. A bitruncated 4-polytope is the same as the bitruncated dual, and will have double the symmetry if the original 4-polytope is self-dual.

A regular polytope (or honeycomb) {p, q, r} will have its {p, q} cells bitruncated into truncated {q, p} cells, and the vertices are replaced by truncated {q, r} cells.

Self-dual {p,q,p} 4-polytope/honeycombs

An interesting result of this operation is that self-dual 4-polytope {p,q,p} (and honeycombs) remain cell-transitive after bitruncation. There are 5 such forms corresponding to the five truncated regular polyhedra: t{q,p}. Two are honeycombs on the 3-sphere, one a honeycomb in Euclidean 3-space, and two are honeycombs in hyperbolic 3-space.

Space4-polytope or honeycomb Schläfli symbol
Coxeter-Dynkin diagram
Cell typeCell
image
Vertex figure
Bitruncated 5-cell (10-cell)
(Uniform 4-polytope)
t1,2{3,3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
truncated tetrahedron Truncated tetrahedron.png Bitruncated 5-cell verf.png
Bitruncated 24-cell (48-cell)
(Uniform 4-polytope)
t1,2{3,4,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
truncated cube Truncated hexahedron.png Bitruncated 24-cell verf.png
Bitruncated cubic honeycomb
(Uniform Euclidean convex honeycomb)
t1,2{4,3,4}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
truncated octahedron Truncated octahedron.png Bitruncated cubic honeycomb verf.png
Bitruncated icosahedral honeycomb
(Uniform hyperbolic convex honeycomb)
t1,2{3,5,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
truncated dodecahedron Truncated dodecahedron.png Bitruncated icosahedral honeycomb verf.png
Bitruncated order-5 dodecahedral honeycomb
(Uniform hyperbolic convex honeycomb)
t1,2{5,3,5}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
truncated icosahedron Truncated icosahedron.png Bitruncated order-5 dodecahedral honeycomb verf.png

See also

Related Research Articles

Uniform 4-polytope Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

Rectification (geometry) Operation in Euclidean geometry

In Euclidean geometry, rectification, also known as critical truncation or complete-truncation is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the rectified facets of the original polytope.

Cubic honeycomb Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

Tetrahedral-octahedral honeycomb Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

Bitruncated cubic honeycomb

The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

Order-4 dodecahedral honeycomb

In the geometry of hyperbolic 3-space, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations. With Schläfli symbol {5,3,4}, it has four dodecahedra around each edge, and 8 dodecahedra around each vertex in an octahedral arrangement. Its vertices are constructed from 3 orthogonal axes. Its dual is the order-5 cubic honeycomb.

Quarter cubic honeycomb

The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – is four times that of the cubic honeycomb.

In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract.

Truncated 5-cell

In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.

Truncation (geometry) Operation that cuts polytope vertices, creating a new facet in place of each vertex

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

Alternation (geometry) Operation on a polyhedron or tiling that removes alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

Cantellation (geometry)

In geometry, a cantellation is a 2nd order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tilings and honeycombs. Cantellating is also rectifying its rectification.

Runcination

In geometry, runcination is an operation that cuts a regular polytope simultaneously along the faces, edges, and vertices, creating new facets in place of the original face, edge, and vertex centers.

Uniform polytope

A uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

Snub (geometry) Geometric operation applied to a polyhedron

In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube and snub dodecahedron. In general, snubs have chiral symmetry with two forms: with clockwise or counterclockwise orientation. By Kepler's names, a snub can be seen as an expansion of a regular polyhedron: moving the faces apart, twisting them about their centers, adding new polygons centered on the original vertices, and adding pairs of triangles fitting between the original edges.

Uniform 5-polytope

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

Uniform honeycombs in hyperbolic space

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

Order-6 tetrahedral honeycomb

In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.

In geometry, a regular skew apeirohedron is an infinite regular skew polyhedron, with either skew regular faces or skew regular vertex figures.

References

Polyhedron operators
Seed Truncation Rectification Bitruncation Dual Expansion Omnitruncation Alternations
CDel node 1.pngCDel p.pngCDel node n1.pngCDel q.pngCDel node n2.pngCDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel node h.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel node.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg Uniform polyhedron-43-t12.svg Uniform polyhedron-43-t2.svg Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Uniform polyhedron-33-t0.png Uniform polyhedron-43-h01.svg Uniform polyhedron-43-s012.png
t0{p,q}
{p,q}
t01{p,q}
t{p,q}
t1{p,q}
r{p,q}
t12{p,q}
2t{p,q}
t2{p,q}
2r{p,q}
t02{p,q}
rr{p,q}
t012{p,q}
tr{p,q}
ht0{p,q}
h{q,p}
ht12{p,q}
s{q,p}
ht012{p,q}
sr{p,q}