List of uniform polyhedra

Last updated

In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

Contents

Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both.

This list includes these:

It was proven in Sopov (1970) that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered an overlooked degenerate example, by relaxing the condition that only two faces may meet at an edge. This is a degenerate uniform polyhedron rather than a uniform polyhedron, because some pairs of edges coincide.

Not included are:

Indexing

Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters:

Names of polyhedra by number of sides

There are generic geometric names for the most common polyhedra. The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube.

Table of polyhedra

The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown.

There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.

Convex uniform polyhedra

NamePicture Vertex
type
Wythoff
symbol
Sym.C#W#U#K#Vert.EdgesFacesFaces by type
Tetrahedron Tetrahedron.png Tetrahedron vertfig.svg
3.3.3
3 | 2 3TdC15W001U01K064644{3}
Triangular prism Triangular prism.png Triangular prism vertfig.png
3.4.4
2 3 | 2D3hC33aU76aK01a6952{3}
+3{4}
Truncated tetrahedron Truncated tetrahedron.png Truncated tetrahedron vertfig.png
3.6.6
2 3 | 3TdC16W006U02K07121884{3}
+4{6}
Truncated cube Truncated hexahedron.png Truncated cube vertfig.svg
3.8.8
2 3 | 4OhC21W008U09K142436148{3}
+6{8}
Truncated dodecahedron Truncated dodecahedron.png Truncated dodecahedron vertfig.png
3.10.10
2 3 | 5IhC29W010U26K3160903220{3}
+12{10}
Cube Hexahedron.png Cube vertfig.png
4.4.4
3 | 2 4OhC18W003U06K1181266{4}
Pentagonal prism Pentagonal prism.png Pentagonal prism vertfig.png
4.4.5
2 5 | 2D5hC33bU76bK01b101575{4}
+2{5}
Hexagonal prism Hexagonal prism.png Hexagonal prism vertfig.png
4.4.6
2 6 | 2D6hC33cU76cK01c121886{4}
+2{6}
Heptagonal prism Prism 7.png Heptagonal prism vertfig.png
4.4.7
2 7 | 2D7hC33dU76dK01d142197{4}
+2{7}
Octagonal prism Octagonal prism.png Octagonal prism vertfig.png
4.4.8
2 8 | 2D8hC33eU76eK01e1624108{4}
+2{8}
Enneagonal prism Prism 9.png Enneagonal prism vertfig.png
4.4.9
2 9 | 2D9hC33fU76fK01f1827119{4}
+2{9}
Decagonal prism Decagonal prism.png Decagonal prism vf.png
4.4.10
2 10 | 2D10hC33gU76gK01g20301210{4}
+2{10}
Hendecagonal prism Hendecagonal prism.png Hendecagonal prism vf.png
4.4.11
2 11 | 2D11hC33hU76hK01h22331311{4}
+2{11}
Dodecagonal prism Dodecagonal prism.png Dodecagonal prism vf.png
4.4.12
2 12 | 2D12hC33iU76iK01i24361412{4}
+2{12}
Truncated octahedron Truncated octahedron.png Truncated octahedron vertfig.png
4.6.6
2 4 | 3OhC20W007U08K132436146{4}
+8{6}
Truncated cuboctahedron Great rhombicuboctahedron.png Great rhombicuboctahedron vertfig.png
4.6.8
2 3 4 |OhC23W015U11K1648722612{4}
+8{6}
+6{8}
Truncated icosidodecahedron Great rhombicosidodecahedron.png Great rhombicosidodecahedron vertfig.png
4.6.10
2 3 5 |IhC31W016U28K331201806230{4}
+20{6}
+12{10}
Dodecahedron Dodecahedron.png Dodecahedron vertfig.png
5.5.5
3 | 2 5IhC26W005U23K2820301212{5}
Truncated icosahedron Truncated icosahedron.png Truncated icosahedron vertfig.png
5.6.6
2 5 | 3IhC27W009U25K3060903212{5}
+20{6}
Octahedron Octahedron.png Octahedron vertfig.svg
3.3.3.3
4 | 2 3OhC17W002U05K1061288{3}
Square antiprism Square antiprism.png Square antiprism vertfig.png
3.3.3.4
| 2 2 4D4dC34aU77aK02a816108{3}
+2{4}
Pentagonal antiprism Pentagonal antiprism.png Pentagonal antiprism vertfig.png
3.3.3.5
| 2 2 5D5dC34bU77bK02b10201210{3}
+2{5}
Hexagonal antiprism Hexagonal antiprism.png Hexagonal antiprism vertfig.png
3.3.3.6
| 2 2 6D6dC34cU77cK02c12241412{3}
+2{6}
Heptagonal antiprism Antiprism 7.png Heptagonal antiprism vertfig.png
3.3.3.7
| 2 2 7D7dC34dU77dK02d14281614{3}
+2{7}
Octagonal antiprism Octagonal antiprism.png Octagonal antiprism vertfig.png
3.3.3.8
| 2 2 8D8dC34eU77eK02e16321816{3}
+2{8}
Enneagonal antiprism Enneagonal antiprism.png Enneagonal antiprism vertfig.png
3.3.3.9
| 2 2 9D9dC34fU77fK02f18362018{3}
+2{9}
Decagonal antiprism Decagonal antiprism.png Decagonal antiprism vf.png
3.3.3.10
| 2 2 10D10dC34gU77gK02g20402220{3}
+2{10}
Hendecagonal antiprism Hendecagonal antiprism.png Hendecagonal antiprism vf.png
3.3.3.11
| 2 2 11D11dC34hU77hK02h22442422{3}
+2{11}
Dodecagonal antiprism Dodecagonal antiprism.png Dodecagonal antiprism vf.png
3.3.3.12
| 2 2 12D12dC34iU77iK02i24482624{3}
+2{12}
Cuboctahedron Cuboctahedron.png Cuboctahedron vertfig.png
3.4.3.4
2 | 3 4OhC19W011U07K121224148{3}
+6{4}
Rhombicuboctahedron Small rhombicuboctahedron.png Small rhombicuboctahedron vertfig.png
3.4.4.4
3 4 | 2OhC22W013U10K152448268{3}
+(6+12){4}
Rhombicosidodecahedron Small rhombicosidodecahedron.png Small rhombicosidodecahedron vertfig.png
3.4.5.4
3 5 | 2IhC30W014U27K32601206220{3}
+30{4}
+12{5}
Icosidodecahedron Icosidodecahedron.png Icosidodecahedron vertfig.png
3.5.3.5
2 | 3 5IhC28W012U24K2930603220{3}
+12{5}
Icosahedron Icosahedron.png Icosahedron vertfig.png
3.3.3.3.3
5 | 2 3IhC25W004U22K2712302020{3}
Snub cube Snub hexahedron.png Snub cube vertfig.png
3.3.3.3.4
| 2 3 4OC24W017U12K17246038(8+24){3}
+6{4}
Snub dodecahedron Snub dodecahedron ccw.png Snub dodecahedron vertfig.png
3.3.3.3.5
| 2 3 5IC32W018U29K346015092(20+60){3}
+12{5}

Uniform star polyhedra

The forms containing only convex faces are listed first, followed by the forms with star faces. Again infinitely many prisms and antiprisms exist; they are listed here up to the 8-sided ones.

The uniform polyhedra |5/2 3 3, |5/23/23/2, |5/35/2 3, |3/25/3 3 5/2, and | (3/2) 5/3 (3) 5/2 have some faces occurring as coplanar pairs. (Coxeter et al. 1954, pp. 423, 425, 426; Skilling 1975, p. 123)

NameImage Wyth sym Vert. fig Sym.C#W#U#K#Vert.EdgesFacesChi Orient- able? Dens.Faces by type
Octahemioctahedron Octahemioctahedron.png 3/2 3 | 3 Octahemioctahedron vertfig.png 6.3/2.6.3OhC37W068U03K081224120Yes 8{3}+4{6}
Tetrahemihexahedron Tetrahemihexahedron.png 3/2 3 | 2 Tetrahemihexahedron vertfig.svg 4.3/2.4.3TdC36W067U04K0961271No 4{3}+3{4}
Cubohemioctahedron Cubohemioctahedron.png 4/3 4 | 3 Cubohemioctahedron vertfig.png 6.4/3.6.4OhC51W078U15K20122410−2No 6{4}+4{6}
Great dodecahedron Great dodecahedron.png 5/2| 2 5 Great dodecahedron vertfig.png (5.5.5.5.5)/2IhC44W021U35K40123012−6Yes312{5}
Great icosahedron Great icosahedron.png 5/2| 2 3 Great icosahedron vertfig.svg (3.3.3.3.3)/2IhC69W041U53K581230202Yes720{3}
Great ditrigonal icosidodecahedron Great ditrigonal icosidodecahedron.png 3/2| 3 5 Great ditrigonal icosidodecahedron vertfig.png (5.3.5.3.5.3)/2IhC61W087U47K52206032−8Yes620{3}+12{5}
Small rhombihexahedron Small rhombihexahedron.png 2 4 (3/24/2) | Small rhombihexahedron vertfig.png 4.8.4/3.8/7OhC60W086U18K23244818−6No 12{4}+6{8}
Small cubicuboctahedron Small cubicuboctahedron.png 3/2 4 | 4 Small cubicuboctahedron vertfig.png 8.3/2.8.4OhC38W069U13K18244820−4Yes28{3}+6{4}+6{8}
Nonconvex great rhombicuboctahedron Uniform great rhombicuboctahedron.png 3/2 4 | 2 Uniform great rhombicuboctahedron vertfig.png 4.3/2.4.4OhC59W085U17K222448262Yes58{3}+(6+12){4}
Small dodecahemidodecahedron Small dodecahemidodecahedron.png 5/4 5 | 5 Small dodecahemidodecahedron vertfig.png 10.5/4.10.5IhC65W091U51K56306018−12No 12{5}+6{10}
Great dodecahemicosahedron Great dodecahemicosahedron.png 5/4 5 | 3 Great dodecahemicosahedron vertfig.png 6.5/4.6.5IhC81W102U65K70306022−8No 12{5}+10{6}
Small icosihemidodecahedron Small icosihemidodecahedron.png 3/2 3 | 5 Small icosihemidodecahedron vertfig.svg 10.3/2.10.3IhC63W089U49K54306026−4No 20{3}+6{10}
Small dodecicosahedron Small dodecicosahedron.png 3 5 (3/25/4) | Small dodecicosahedron vertfig.png 10.6.10/9.6/5IhC64W090U50K556012032−28No 20{6}+12{10}
Small rhombidodecahedron Small rhombidodecahedron.png 2 5 (3/25/2) | Small rhombidodecahedron vertfig.png 10.4.10/9.4/3IhC46W074U39K446012042−18No 30{4}+12{10}
Small dodecicosidodecahedron Small dodecicosidodecahedron.png 3/2 5 | 5 Small dodecicosidodecahedron vertfig.png 10.3/2.10.5IhC42W072U33K386012044−16Yes220{3}+12{5}+12{10}
Rhombicosahedron Rhombicosahedron.png 2 3 (5/45/2) | Rhombicosahedron vertfig.png 6.4.6/5.4/3IhC72W096U56K616012050−10No 30{4}+20{6}
Great icosicosidodecahedron Great icosicosidodecahedron.png 3/2 5 | 3 Great icosicosidodecahedron vertfig.png 6.3/2.6.5IhC62W088U48K536012052−8Yes620{3}+12{5}+20{6}
Pentagrammic prism Pentagrammic prism.png 2 5/2| 2 Pentagrammic prism vertfig.png 5/2.4.4D5hC33bU78aK03a101572Yes25{4}+2{5/2}
Heptagrammic prism (7/2) Heptagrammic prism 7-2.png 2 7/2| 2 Septagrammic prism vertfig.png 7/2.4.4D7hC33dU78bK03b142192Yes27{4}+2{7/2}
Heptagrammic prism (7/3) Heptagrammic prism 7-3.png 2 7/3| 2 Septagrammic prism-3-7 vertfig.png 7/3.4.4D7hC33dU78cK03c142192Yes37{4}+2{7/3}
Octagrammic prism Prism 8-3.png 2 8/3| 2 Octagrammic prism vertfig.png 8/3.4.4D8hC33eU78dK03d1624102Yes38{4}+2{8/3}
Pentagrammic antiprism Pentagrammic antiprism.png | 2 2 5/2 Pentagrammic antiprism vertfig.png 5/2.3.3.3D5hC34bU79aK04a1020122Yes210{3}+2{5/2}
Pentagrammic crossed-antiprism Pentagrammic crossed antiprism.png | 2 2 5/3 Pentagrammic crossed-antiprism vertfig.png 5/3.3.3.3D5dC35aU80aK05a1020122Yes310{3}+2{5/2}
Heptagrammic antiprism (7/2) Antiprism 7-2.png | 2 2 7/2 Heptagrammic antiprism-2-7 vertfig.png 7/2.3.3.3D7hC34dU79bK04b1428162Yes314{3}+2{7/2}
Heptagrammic antiprism (7/3) Antiprism 7-3.png | 2 2 7/3 Heptagrammic antiprism-3-7 vertfig.png 7/3.3.3.3D7dC34dU79cK04c1428162Yes314{3}+2{7/3}
Heptagrammic crossed-antiprism Antiprism 7-4.png | 2 2 7/4 Heptagrammic antiprism-4-7 vertfig.png 7/4.3.3.3D7hC35bU80bK05b1428162Yes414{3}+2{7/3}
Octagrammic antiprism Antiprism 8-3.png | 2 2 8/3 Octagrammic antiprism-3-8 vertfig.png 8/3.3.3.3D8dC34eU79dK04d1632182Yes316{3}+2{8/3}
Octagrammic crossed-antiprism Antiprism 8-5.png | 2 2 8/5 Octagrammic antiprism-5-8 vertfig.png 8/5.3.3.3D8dC35cU80cK05c1632182Yes516{3}+2{8/3}
Small stellated dodecahedron Small stellated dodecahedron.png 5 | 2 5/2 Small stellated dodecahedron vertfig.png (5/2)5IhC43W020U34K39123012−6Yes312{5/2}
Great stellated dodecahedron Great stellated dodecahedron.png 3 | 2 5/2 Great stellated dodecahedron vertfig.png (5/2)3IhC68W022U52K572030122Yes712{5/2}
Ditrigonal dodecadodecahedron Ditrigonal dodecadodecahedron.png 3 |5/3 5 Ditrigonal dodecadodecahedron vertfig.png (5/3.5)3IhC53W080U41K46206024−16Yes412{5}+12{5/2}
Small ditrigonal icosidodecahedron Small ditrigonal icosidodecahedron.png 3 |5/2 3 Small ditrigonal icosidodecahedron vertfig.png (5/2.3)3IhC39W070U30K35206032−8Yes220{3}+12{5/2}
Stellated truncated hexahedron Stellated truncated hexahedron.png 2 3 |4/3 Stellated truncated hexahedron vertfig.png 8/3.8/3.3OhC66W092U19K242436142Yes78{3}+6{8/3}
Great rhombihexahedron Great rhombihexahedron.png 2 4/3 (3/24/2) | Great rhombihexahedron vertfig.png 4.8/3.4/3.8/5OhC82W103U21K26244818−6No 12{4}+6{8/3}
Great cubicuboctahedron Great cubicuboctahedron.png 3 4 |4/3 Great cubicuboctahedron vertfig.png 8/3.3.8/3.4OhC50W077U14K19244820−4Yes48{3}+6{4}+6{8/3}
Great dodecahemidodecahedron Great dodecahemidodecahedron.png 5/35/2|5/3 Great dodecahemidodecahedron vertfig.png 10/3.5/3.10/3.5/2IhC86W107U70K75306018−12No 12{5/2}+6{10/3}
Small dodecahemicosahedron Small dodecahemicosahedron.png 5/35/2| 3 Small dodecahemicosahedron vertfig.png 6.5/3.6.5/2IhC78W100U62K67306022−8No 12{5/2}+10{6}
Dodecadodecahedron Dodecadodecahedron.png 2 | 5 5/2 Dodecadodecahedron vertfig.png (5/2.5)2IhC45W073U36K41306024−6Yes312{5}+12{5/2}
Great icosihemidodecahedron Great icosihemidodecahedron.png 3/2 3 |5/3 Great icosihemidodecahedron vertfig.png 10/3.3/2.10/3.3IhC85W106U71K76306026−4No 20{3}+6{10/3}
Great icosidodecahedron Great icosidodecahedron.png 2 | 3 5/2 Great icosidodecahedron vertfig.png (5/2.3)2IhC70W094U54K593060322Yes720{3}+12{5/2}
Cubitruncated cuboctahedron Cubitruncated cuboctahedron.png 4/3 3 4 | Cubitruncated cuboctahedron vertfig.png 8/3.6.8OhC52W079U16K21487220−4Yes48{6}+6{8}+6{8/3}
Great truncated cuboctahedron Great truncated cuboctahedron.png 4/3 2 3 | Great truncated cuboctahedron vertfig.png 8/3.4.6/5OhC67W093U20K254872262Yes112{4}+8{6}+6{8/3}
Truncated great dodecahedron Great truncated dodecahedron.png 2 5/2| 5 Truncated great dodecahedron vertfig.png 10.10.5/2IhC47W075U37K42609024−6Yes312{5/2}+12{10}
Small stellated truncated dodecahedron Small stellated truncated dodecahedron.png 2 5 |5/3 Small stellated truncated dodecahedron vertfig.png 10/3.10/3.5IhC74W097U58K63609024−6Yes912{5}+12{10/3}
Great stellated truncated dodecahedron Great stellated truncated dodecahedron.png 2 3 |5/3 Great stellated truncated dodecahedron vertfig.png 10/3.10/3.3IhC83W104U66K716090322Yes1320{3}+12{10/3}
Truncated great icosahedron Great truncated icosahedron.png 2 5/2| 3 Great truncated icosahedron vertfig.png 6.6.5/2IhC71W095U55K606090322Yes712{5/2}+20{6}
Great dodecicosahedron Great dodecicosahedron.png 3 5/3(3/25/2) | Great dodecicosahedron vertfig.png 6.10/3.6/5.10/7IhC79W101U63K686012032−28No 20{6}+12{10/3}
Great rhombidodecahedron Great rhombidodecahedron.png 2 5/3 (3/25/4) | Great rhombidodecahedron vertfig.png 4.10/3.4/3.10/7IhC89W109U73K786012042−18No 30{4}+12{10/3}
Icosidodecadodecahedron Icosidodecadodecahedron.png 5/3 5 | 3 Icosidodecadodecahedron vertfig.png 6.5/3.6.5IhC56W083U44K496012044−16Yes412{5}+12{5/2}+20{6}
Small ditrigonal dodecicosidodecahedron Small ditrigonal dodecicosidodecahedron.png 5/3 3 | 5 Small ditrigonal dodecicosidodecahedron vertfig.png 10.5/3.10.3IhC55W082U43K486012044−16Yes420{3}+12{5/2}+12{10}
Great ditrigonal dodecicosidodecahedron Great ditrigonal dodecicosidodecahedron.png 3 5 |5/3 Great ditrigonal dodecicosidodecahedron vertfig.png 10/3.3.10/3.5IhC54W081U42K476012044−16Yes420{3}+12{5}+12{10/3}
Great dodecicosidodecahedron Great dodecicosidodecahedron.png 5/2 3 |5/3 Great dodecicosidodecahedron vertfig.png 10/3.5/2.10/3.3IhC77W099U61K666012044−16Yes1020{3}+12{5/2}+12{10/3}
Small icosicosidodecahedron Small icosicosidodecahedron.png 5/2 3 | 3 Small icosicosidodecahedron vertfig.png 6.5/2.6.3IhC40W071U31K366012052−8Yes220{3}+12{5/2}+20{6}
Rhombidodecadodecahedron Rhombidodecadodecahedron.png 5/2 5 | 2 Rhombidodecadodecahedron vertfig.png 4.5/2.4.5IhC48W076U38K436012054−6Yes330{4}+12{5}+12{5/2}
Nonconvex great rhombicosidodecahedron Uniform great rhombicosidodecahedron.png 5/3 3 | 2 Uniform great rhombicosidodecahedron vertfig.png 4.5/3.4.3IhC84W105U67K7260120622Yes1320{3}+30{4}+12{5/2}
Icositruncated dodecadodecahedron Icositruncated dodecadodecahedron.png 3 5 5/3| Icositruncated dodecadodecahedron vertfig.png 10/3.6.10IhC57W084U45K5012018044−16Yes420{6}+12{10}+12{10/3}
Truncated dodecadodecahedron Truncated dodecadodecahedron.png 2 5 5/3| Truncated dodecadodecahedron vertfig.png 10/3.4.10/9IhC75W098U59K6412018054−6Yes330{4}+12{10}+12{10/3}
Great truncated icosidodecahedron Great truncated icosidodecahedron.png 2 3 5/3| Great truncated icosidodecahedron vertfig.png 10/3.4.6IhC87W108U68K73120180622Yes1330{4}+20{6}+12{10/3}
Snub dodecadodecahedron Snub dodecadodecahedron.png | 2 5/2 5 Snub dodecadodecahedron vertfig.png 3.3.5/2.3.5IC49W111U40K456015084−6Yes360{3}+12{5}+12{5/2}
Inverted snub dodecadodecahedron Inverted snub dodecadodecahedron.png |5/3 2 5 Inverted snub dodecadodecahedron vertfig.png 3.5/3.3.3.5IC76W114U60K656015084−6Yes960{3}+12{5}+12{5/2}
Great snub icosidodecahedron Great snub icosidodecahedron.png | 2 5/2 3 Great snub icosidodecahedron vertfig.png 34.5/2IC73W113U57K6260150922Yes7(20+60){3}+12{5/2}
Great inverted snub icosidodecahedron Great inverted snub icosidodecahedron.png |5/3 2 3 Great inverted snub icosidodecahedron vertfig.png 34.5/3IC88W116U69K7460150922Yes13(20+60){3}+12{5/2}
Great retrosnub icosidodecahedron Great retrosnub icosidodecahedron.png | 2 3/25/3 Great retrosnub icosidodecahedron vertfig.png (34.5/2)/2IC90W117U74K7960150922Yes37(20+60){3}+12{5/2}
Great snub dodecicosidodecahedron Great snub dodecicosidodecahedron.png |5/35/2 3 Great snub dodecicosidodecahedron vertfig.png 33.5/3.3.5/2IC80W115U64K6960180104−16Yes10(20+60){3}+(12+12){5/2}
Snub icosidodecadodecahedron Snub icosidodecadodecahedron.png |5/3 3 5 Snub icosidodecadodecahedron vertfig.png 33.5.3.5/3IC58W112U46K5160180104−16Yes4(20+60){3}+12{5}+12{5/2}
Small snub icosicosidodecahedron Small snub icosicosidodecahedron.png |5/2 3 3 Small snub icosicosidodecahedron vertfig.png 35.5/2IhC41W110U32K3760180112−8Yes2(40+60){3}+12{5/2}
Small retrosnub icosicosidodecahedron Small retrosnub icosicosidodecahedron.png |3/23/25/2 Small retrosnub icosicosidodecahedron vertfig.png (35.5/2)/2IhC91W118U72K7760180112−8Yes38(40+60){3}+12{5/2}
Great dirhombicosidodecahedron Great dirhombicosidodecahedron.png |3/25/3 3 5/2 Great dirhombicosidodecahedron vertfig.png (4.5/3.4.3.4.5/2.4.3/2)/2IhC92W119U75K8060240124−56No 40{3}+60{4}+24{5/2}

Special case

NameImage Wyth
sym
Vert.
fig
Sym.C#W#U#K#Vert.EdgesFacesChi Orient-
able?
Dens.Faces by type
Great disnub
dirhombidodecahedron
Great disnub dirhombidodecahedron.png | (3/2) 5/3 (3) 5/2 Great disnub dirhombidodecahedron vertfig.png
(5/2.4.3.3.3.4. 5/3.
4.3/2.3/2.3/2.4)/2
Ih60360 (*)204−96No 120{3}+60{4}+24{5/2}

The great disnub dirhombidodecahedron has 240 of its 360 edges coinciding in space in 120 pairs. Because of this edge-degeneracy, it is not always considered to be a uniform polyhedron.

Column key

See also

Related Research Articles

<span class="mw-page-title-main">Convex uniform honeycomb</span> Spatial tiling of convex uniform polyhedra

In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Vertex figure</span> Shape made by slicing off a corner of a polytope

In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.

In geometry, the term semiregular polyhedron is used variously by different authors.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.

In geometry, a snub polyhedron is a polyhedron obtained by performing a snub operation: alternating a corresponding omnitruncated or truncated polyhedron, depending on the definition. Some, but not all, authors include antiprisms as snub polyhedra, as they are obtained by this construction from a degenerate "polyhedron" with only two faces.

<span class="mw-page-title-main">Alternation (geometry)</span> Removal of alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges.

In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.

<span class="mw-page-title-main">Uniform star polyhedron</span> Self-intersecting uniform polyhedron

In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, or both.

<span class="mw-page-title-main">Prismatic uniform polyhedron</span> Uniform polyhedron with dihedral symmetry

In geometry, a prismatic uniform polyhedron is a uniform polyhedron with dihedral symmetry. They exist in two infinite families, the uniform prisms and the uniform antiprisms. All have their vertices in parallel planes and are therefore prismatoids.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Prismatic uniform 4-polytope</span> Type of uniform 4-polytope in four-dimensional geography

In four-dimensional geometry, a prismatic uniform 4-polytope is a uniform 4-polytope with a nonconnected Coxeter diagram symmetry group. These figures are analogous to the set of prisms and antiprism uniform polyhedra, but add a third category called duoprisms, constructed as a product of two regular polygons.

References