List of uniform polyhedra

Last updated

In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

Contents

Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both.

This list includes these:

It was proven in Sopov (1970) that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered an overlooked degenerate example, by relaxing the condition that only two faces may meet at an edge. This is a degenerate uniform polyhedron rather than a uniform polyhedron, because some pairs of edges coincide.

Not included are:

Indexing

Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters:

Names of polyhedra by number of sides

There are generic geometric names for the most common polyhedra. The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube.

Table of polyhedra

The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown.

There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.

Convex uniform polyhedra

NamePicture Vertex
type
Wythoff
symbol
Sym.C#W#U#K#Vert.EdgesFacesFaces by type
Tetrahedron Tetrahedron.png Tetrahedron vertfig.svg
3.3.3
3 | 2 3TdC15W001U01K064644{3}
Triangular prism Triangular prism.png Triangular prism vertfig.png
3.4.4
2 3 | 2D3hC33aU76aK01a6952{3}
+3{4}
Truncated tetrahedron Truncated tetrahedron.png Truncated tetrahedron vertfig.svg
3.6.6
2 3 | 3TdC16W006U02K07121884{3}
+4{6}
Truncated cube Truncated hexahedron.png Truncated cube vertfig.svg
3.8.8
2 3 | 4OhC21W008U09K142436148{3}
+6{8}
Truncated dodecahedron Truncated dodecahedron.png Truncated dodecahedron vertfig.svg
3.10.10
2 3 | 5IhC29W010U26K3160903220{3}
+12{10}
Cube Hexahedron.png Cube vertfig.png
4.4.4
3 | 2 4OhC18W003U06K1181266{4}
Pentagonal prism Pentagonal prism.png Pentagonal prism vertfig.png
4.4.5
2 5 | 2D5hC33bU76bK01b101575{4}
+2{5}
Hexagonal prism Hexagonal prism.png Hexagonal prism vertfig.png
4.4.6
2 6 | 2D6hC33cU76cK01c121886{4}
+2{6}
Heptagonal prism Prism 7.png Heptagonal prism vertfig.png
4.4.7
2 7 | 2D7hC33dU76dK01d142197{4}
+2{7}
Octagonal prism Octagonal prism.png Octagonal prism vertfig.svg
4.4.8
2 8 | 2D8hC33eU76eK01e1624108{4}
+2{8}
Enneagonal prism Prism 9.png Enneagonal prism vertfig.png
4.4.9
2 9 | 2D9hC33fU76fK01f1827119{4}
+2{9}
Decagonal prism Decagonal prism.png Decagonal prism vf.png
4.4.10
2 10 | 2D10hC33gU76gK01g20301210{4}
+2{10}
Hendecagonal prism Hendecagonal prism.png Hendecagonal prism vf.png
4.4.11
2 11 | 2D11hC33hU76hK01h22331311{4}
+2{11}
Dodecagonal prism Dodecagonal prism.png Dodecagonal prism vf.png
4.4.12
2 12 | 2D12hC33iU76iK01i24361412{4}
+2{12}
Truncated octahedron Truncated octahedron.png Truncated octahedron vertfig.png
4.6.6
2 4 | 3OhC20W007U08K132436146{4}
+8{6}
Truncated cuboctahedron Great rhombicuboctahedron.png Great rhombicuboctahedron vertfig.svg
4.6.8
2 3 4 |OhC23W015U11K1648722612{4}
+8{6}
+6{8}
Truncated icosidodecahedron Great rhombicosidodecahedron.png Great rhombicosidodecahedron vertfig.png
4.6.10
2 3 5 |IhC31W016U28K331201806230{4}
+20{6}
+12{10}
Dodecahedron Dodecahedron.png Dodecahedron vertfig.png
5.5.5
3 | 2 5IhC26W005U23K2820301212{5}
Truncated icosahedron Truncated icosahedron.png Truncated icosahedron vertfig.svg
5.6.6
2 5 | 3IhC27W009U25K3060903212{5}
+20{6}
Octahedron Octahedron.png Octahedron vertfig.svg
3.3.3.3
4 | 2 3OhC17W002U05K1061288{3}
Square antiprism Square antiprism.png Square antiprism vertfig.png
3.3.3.4
| 2 2 4D4dC34aU77aK02a816108{3}
+2{4}
Pentagonal antiprism Pentagonal antiprism.png Pentagonal antiprism vertfig.png
3.3.3.5
| 2 2 5D5dC34bU77bK02b10201210{3}
+2{5}
Hexagonal antiprism Hexagonal antiprism.png Hexagonal antiprism vertfig.png
3.3.3.6
| 2 2 6D6dC34cU77cK02c12241412{3}
+2{6}
Heptagonal antiprism Antiprism 7.png Heptagonal antiprism vertfig.png
3.3.3.7
| 2 2 7D7dC34dU77dK02d14281614{3}
+2{7}
Octagonal antiprism Octagonal antiprism.png Octagonal antiprism vertfig.png
3.3.3.8
| 2 2 8D8dC34eU77eK02e16321816{3}
+2{8}
Enneagonal antiprism Enneagonal antiprism.png Enneagonal antiprism vertfig.png
3.3.3.9
| 2 2 9D9dC34fU77fK02f18362018{3}
+2{9}
Decagonal antiprism Decagonal antiprism.png Decagonal antiprism vf.png
3.3.3.10
| 2 2 10D10dC34gU77gK02g20402220{3}
+2{10}
Hendecagonal antiprism Hendecagonal antiprism.png Hendecagonal antiprism vf.png
3.3.3.11
| 2 2 11D11dC34hU77hK02h22442422{3}
+2{11}
Dodecagonal antiprism Dodecagonal antiprism.png Dodecagonal antiprism vf.png
3.3.3.12
| 2 2 12D12dC34iU77iK02i24482624{3}
+2{12}
Cuboctahedron Cuboctahedron.png Cuboctahedron vertfig.png
3.4.3.4
2 | 3 4OhC19W011U07K121224148{3}
+6{4}
Rhombicuboctahedron Small rhombicuboctahedron.png Small rhombicuboctahedron vertfig.svg
3.4.4.4
3 4 | 2OhC22W013U10K152448268{3}
+(6+12){4}
Rhombicosidodecahedron Small rhombicosidodecahedron.png Small rhombicosidodecahedron vertfig.png
3.4.5.4
3 5 | 2IhC30W014U27K32601206220{3}
+30{4}
+12{5}
Icosidodecahedron Icosidodecahedron.png Icosidodecahedron vertfig.png
3.5.3.5
2 | 3 5IhC28W012U24K2930603220{3}
+12{5}
Icosahedron Icosahedron.png Icosahedron vertfig.png
3.3.3.3.3
5 | 2 3IhC25W004U22K2712302020{3}
Snub cube Snub hexahedron.png Snub cube vertfig.png
3.3.3.3.4
| 2 3 4OC24W017U12K17246038(8+24){3}
+6{4}
Snub dodecahedron Snub dodecahedron ccw.png Snub dodecahedron vertfig.png
3.3.3.3.5
| 2 3 5IC32W018U29K346015092(20+60){3}
+12{5}

Uniform star polyhedra

The forms containing only convex faces are listed first, followed by the forms with star faces. Again infinitely many prisms and antiprisms exist; they are listed here up to the 8-sided ones.

The uniform polyhedra |5/2 3 3, |5/23/23/2, |5/35/2 3, |3/25/3 3 5/2, and | (3/2) 5/3 (3) 5/2 have some faces occurring as coplanar pairs. (Coxeter et al. 1954, pp. 423, 425, 426; Skilling 1975, p. 123)

NameImage Wyth sym Vert. fig Sym.C#W#U#K#Vert.EdgesFacesChi Orient- able? Dens.Faces by type
Octahemioctahedron Octahemioctahedron.png 3/2 3 | 3 Octahemioctahedron vertfig.png 6.3/2.6.3OhC37W068U03K081224120Yes 8{3}+4{6}
Tetrahemihexahedron Tetrahemihexahedron.png 3/2 3 | 2 Tetrahemihexahedron vertfig.svg 4.3/2.4.3TdC36W067U04K0961271No 4{3}+3{4}
Cubohemioctahedron Cubohemioctahedron.png 4/3 4 | 3 Cubohemioctahedron vertfig.png 6.4/3.6.4OhC51W078U15K20122410−2No 6{4}+4{6}
Great dodecahedron Great dodecahedron.png 5/2| 2 5 Great dodecahedron vertfig.png (5.5.5.5.5)/2IhC44W021U35K40123012−6Yes312{5}
Great icosahedron Great icosahedron.png 5/2| 2 3 Great icosahedron vertfig.svg (3.3.3.3.3)/2IhC69W041U53K581230202Yes720{3}
Great ditrigonal icosidodecahedron Great ditrigonal icosidodecahedron.png 3/2| 3 5 Great ditrigonal icosidodecahedron vertfig.png (5.3.5.3.5.3)/2IhC61W087U47K52206032−8Yes620{3}+12{5}
Small rhombihexahedron Small rhombihexahedron.png 2 4 (3/24/2) | Small rhombihexahedron vertfig.png 4.8.4/3.8/7OhC60W086U18K23244818−6No 12{4}+6{8}
Small cubicuboctahedron Small cubicuboctahedron.png 3/2 4 | 4 Small cubicuboctahedron vertfig.png 8.3/2.8.4OhC38W069U13K18244820−4Yes28{3}+6{4}+6{8}
Nonconvex great rhombicuboctahedron Uniform great rhombicuboctahedron.png 3/2 4 | 2 Uniform great rhombicuboctahedron vertfig.svg 4.3/2.4.4OhC59W085U17K222448262Yes58{3}+(6+12){4}
Small dodecahemidodecahedron Small dodecahemidodecahedron.png 5/4 5 | 5 Small dodecahemidodecahedron vertfig.png 10.5/4.10.5IhC65W091U51K56306018−12No 12{5}+6{10}
Great dodecahemicosahedron Great dodecahemicosahedron.png 5/4 5 | 3 Great dodecahemicosahedron vertfig.png 6.5/4.6.5IhC81W102U65K70306022−8No 12{5}+10{6}
Small icosihemidodecahedron Small icosihemidodecahedron.png 3/2 3 | 5 Small icosihemidodecahedron vertfig.svg 10.3/2.10.3IhC63W089U49K54306026−4No 20{3}+6{10}
Small dodecicosahedron Small dodecicosahedron.png 3 5 (3/25/4) | Small dodecicosahedron vertfig.png 10.6.10/9.6/5IhC64W090U50K556012032−28No 20{6}+12{10}
Small rhombidodecahedron Small rhombidodecahedron.png 2 5 (3/25/2) | Small rhombidodecahedron vertfig.png 10.4.10/9.4/3IhC46W074U39K446012042−18No 30{4}+12{10}
Small dodecicosidodecahedron Small dodecicosidodecahedron.png 3/2 5 | 5 Small dodecicosidodecahedron vertfig.png 10.3/2.10.5IhC42W072U33K386012044−16Yes220{3}+12{5}+12{10}
Rhombicosahedron Rhombicosahedron.png 2 3 (5/45/2) | Rhombicosahedron vertfig.png 6.4.6/5.4/3IhC72W096U56K616012050−10No 30{4}+20{6}
Great icosicosidodecahedron Great icosicosidodecahedron.png 3/2 5 | 3 Great icosicosidodecahedron vertfig.png 6.3/2.6.5IhC62W088U48K536012052−8Yes620{3}+12{5}+20{6}
Pentagrammic prism Pentagrammic prism.png 2 5/2| 2 Pentagrammic prism vertfig.png 5/2.4.4D5hC33bU78aK03a101572Yes25{4}+2{5/2}
Heptagrammic prism (7/2) Heptagrammic prism 7-2.png 2 7/2| 2 Septagrammic prism vertfig.png 7/2.4.4D7hC33dU78bK03b142192Yes27{4}+2{7/2}
Heptagrammic prism (7/3) Heptagrammic prism 7-3.png 2 7/3| 2 Septagrammic prism-3-7 vertfig.png 7/3.4.4D7hC33dU78cK03c142192Yes37{4}+2{7/3}
Octagrammic prism Prism 8-3.png 2 8/3| 2 Octagrammic prism vertfig.png 8/3.4.4D8hC33eU78dK03d1624102Yes38{4}+2{8/3}
Pentagrammic antiprism Pentagrammic antiprism.png | 2 2 5/2 Pentagrammic antiprism vertfig.png 5/2.3.3.3D5hC34bU79aK04a1020122Yes210{3}+2{5/2}
Pentagrammic crossed-antiprism Pentagrammic crossed antiprism.png | 2 2 5/3 Pentagrammic crossed-antiprism vertfig.png 5/3.3.3.3D5dC35aU80aK05a1020122Yes310{3}+2{5/2}
Heptagrammic antiprism (7/2) Antiprism 7-2.png | 2 2 7/2 Heptagrammic antiprism-2-7 vertfig.png 7/2.3.3.3D7hC34dU79bK04b1428162Yes314{3}+2{7/2}
Heptagrammic antiprism (7/3) Antiprism 7-3.png | 2 2 7/3 Heptagrammic antiprism-3-7 vertfig.png 7/3.3.3.3D7dC34dU79cK04c1428162Yes314{3}+2{7/3}
Heptagrammic crossed-antiprism Antiprism 7-4.png | 2 2 7/4 Heptagrammic antiprism-4-7 vertfig.png 7/4.3.3.3D7hC35bU80bK05b1428162Yes414{3}+2{7/3}
Octagrammic antiprism Antiprism 8-3.png | 2 2 8/3 Octagrammic antiprism-3-8 vertfig.png 8/3.3.3.3D8dC34eU79dK04d1632182Yes316{3}+2{8/3}
Octagrammic crossed-antiprism Antiprism 8-5.png | 2 2 8/5 Octagrammic antiprism-5-8 vertfig.png 8/5.3.3.3D8dC35cU80cK05c1632182Yes516{3}+2{8/3}
Small stellated dodecahedron Small stellated dodecahedron.png 5 | 2 5/2 Small stellated dodecahedron vertfig.png (5/2)5IhC43W020U34K39123012−6Yes312{5/2}
Great stellated dodecahedron Great stellated dodecahedron.png 3 | 2 5/2 Great stellated dodecahedron vertfig.png (5/2)3IhC68W022U52K572030122Yes712{5/2}
Ditrigonal dodecadodecahedron Ditrigonal dodecadodecahedron.png 3 |5/3 5 Ditrigonal dodecadodecahedron vertfig.svg (5/3.5)3IhC53W080U41K46206024−16Yes412{5}+12{5/2}
Small ditrigonal icosidodecahedron Small ditrigonal icosidodecahedron.png 3 |5/2 3 Small ditrigonal icosidodecahedron vertfig.svg (5/2.3)3IhC39W070U30K35206032−8Yes220{3}+12{5/2}
Stellated truncated hexahedron Stellated truncated hexahedron.png 2 3 |4/3 Stellated truncated hexahedron vertfig.png 8/3.8/3.3OhC66W092U19K242436142Yes78{3}+6{8/3}
Great rhombihexahedron Great rhombihexahedron.png 2 4/3 (3/24/2) | Great rhombihexahedron vertfig.png 4.8/3.4/3.8/5OhC82W103U21K26244818−6No 12{4}+6{8/3}
Great cubicuboctahedron Great cubicuboctahedron.png 3 4 |4/3 Great cubicuboctahedron vertfig.png 8/3.3.8/3.4OhC50W077U14K19244820−4Yes48{3}+6{4}+6{8/3}
Great dodecahemidodecahedron Great dodecahemidodecahedron.png 5/35/2|5/3 Great dodecahemidodecahedron vertfig.png 10/3.5/3.10/3.5/2IhC86W107U70K75306018−12No 12{5/2}+6{10/3}
Small dodecahemicosahedron Small dodecahemicosahedron.png 5/35/2| 3 Small dodecahemicosahedron vertfig.png 6.5/3.6.5/2IhC78W100U62K67306022−8No 12{5/2}+10{6}
Dodecadodecahedron Dodecadodecahedron.png 2 | 5 5/2 Dodecadodecahedron vertfig.png (5/2.5)2IhC45W073U36K41306024−6Yes312{5}+12{5/2}
Great icosihemidodecahedron Great icosihemidodecahedron.png 3/2 3 |5/3 Great icosihemidodecahedron vertfig.png 10/3.3/2.10/3.3IhC85W106U71K76306026−4No 20{3}+6{10/3}
Great icosidodecahedron Great icosidodecahedron.png 2 | 3 5/2 Great icosidodecahedron vertfig.png (5/2.3)2IhC70W094U54K593060322Yes720{3}+12{5/2}
Cubitruncated cuboctahedron Cubitruncated cuboctahedron.png 4/3 3 4 | Cubitruncated cuboctahedron vertfig.svg 8/3.6.8OhC52W079U16K21487220−4Yes48{6}+6{8}+6{8/3}
Great truncated cuboctahedron Great truncated cuboctahedron.png 4/3 2 3 | Great truncated cuboctahedron vertfig.png 8/3.4.6/5OhC67W093U20K254872262Yes112{4}+8{6}+6{8/3}
Truncated great dodecahedron Great truncated dodecahedron.png 2 5/2| 5 Truncated great dodecahedron vertfig.png 10.10.5/2IhC47W075U37K42609024−6Yes312{5/2}+12{10}
Small stellated truncated dodecahedron Small stellated truncated dodecahedron.png 2 5 |5/3 Small stellated truncated dodecahedron vertfig.png 10/3.10/3.5IhC74W097U58K63609024−6Yes912{5}+12{10/3}
Great stellated truncated dodecahedron Great stellated truncated dodecahedron.png 2 3 |5/3 Great stellated truncated dodecahedron vertfig.png 10/3.10/3.3IhC83W104U66K716090322Yes1320{3}+12{10/3}
Truncated great icosahedron Great truncated icosahedron.png 2 5/2| 3 Great truncated icosahedron vertfig.png 6.6.5/2IhC71W095U55K606090322Yes712{5/2}+20{6}
Great dodecicosahedron Great dodecicosahedron.png 3 5/3(3/25/2) | Great dodecicosahedron vertfig.png 6.10/3.6/5.10/7IhC79W101U63K686012032−28No 20{6}+12{10/3}
Great rhombidodecahedron Great rhombidodecahedron.png 2 5/3 (3/25/4) | Great rhombidodecahedron vertfig.png 4.10/3.4/3.10/7IhC89W109U73K786012042−18No 30{4}+12{10/3}
Icosidodecadodecahedron Icosidodecadodecahedron.png 5/3 5 | 3 Icosidodecadodecahedron vertfig.png 6.5/3.6.5IhC56W083U44K496012044−16Yes412{5}+12{5/2}+20{6}
Small ditrigonal dodecicosidodecahedron Small ditrigonal dodecicosidodecahedron.png 5/3 3 | 5 Small ditrigonal dodecicosidodecahedron vertfig.png 10.5/3.10.3IhC55W082U43K486012044−16Yes420{3}+12{5/2}+12{10}
Great ditrigonal dodecicosidodecahedron Great ditrigonal dodecicosidodecahedron.png 3 5 |5/3 Great ditrigonal dodecicosidodecahedron vertfig.png 10/3.3.10/3.5IhC54W081U42K476012044−16Yes420{3}+12{5}+12{10/3}
Great dodecicosidodecahedron Great dodecicosidodecahedron.png 5/2 3 |5/3 Great dodecicosidodecahedron vertfig.png 10/3.5/2.10/3.3IhC77W099U61K666012044−16Yes1020{3}+12{5/2}+12{10/3}
Small icosicosidodecahedron Small icosicosidodecahedron.png 5/2 3 | 3 Small icosicosidodecahedron vertfig.png 6.5/2.6.3IhC40W071U31K366012052−8Yes220{3}+12{5/2}+20{6}
Rhombidodecadodecahedron Rhombidodecadodecahedron.png 5/2 5 | 2 Rhombidodecadodecahedron vertfig.png 4.5/2.4.5IhC48W076U38K436012054−6Yes330{4}+12{5}+12{5/2}
Nonconvex great rhombicosidodecahedron Uniform great rhombicosidodecahedron.png 5/3 3 | 2 Uniform great rhombicosidodecahedron vertfig.png 4.5/3.4.3IhC84W105U67K7260120622Yes1320{3}+30{4}+12{5/2}
Icositruncated dodecadodecahedron Icositruncated dodecadodecahedron.png 3 5 5/3| Icositruncated dodecadodecahedron vertfig.png 10/3.6.10IhC57W084U45K5012018044−16Yes420{6}+12{10}+12{10/3}
Truncated dodecadodecahedron Truncated dodecadodecahedron.png 2 5 5/3| Truncated dodecadodecahedron vertfig.png 10/3.4.10/9IhC75W098U59K6412018054−6Yes330{4}+12{10}+12{10/3}
Great truncated icosidodecahedron Great truncated icosidodecahedron.png 2 3 5/3| Great truncated icosidodecahedron vertfig.png 10/3.4.6IhC87W108U68K73120180622Yes1330{4}+20{6}+12{10/3}
Snub dodecadodecahedron Snub dodecadodecahedron.png | 2 5/2 5 Snub dodecadodecahedron vertfig.png 3.3.5/2.3.5IC49W111U40K456015084−6Yes360{3}+12{5}+12{5/2}
Inverted snub dodecadodecahedron Inverted snub dodecadodecahedron.png |5/3 2 5 Inverted snub dodecadodecahedron vertfig.png 3.5/3.3.3.5IC76W114U60K656015084−6Yes960{3}+12{5}+12{5/2}
Great snub icosidodecahedron Great snub icosidodecahedron.png | 2 5/2 3 Great snub icosidodecahedron vertfig.png 34.5/2IC73W113U57K6260150922Yes7(20+60){3}+12{5/2}
Great inverted snub icosidodecahedron Great inverted snub icosidodecahedron.png |5/3 2 3 Great inverted snub icosidodecahedron vertfig.png 34.5/3IC88W116U69K7460150922Yes13(20+60){3}+12{5/2}
Great retrosnub icosidodecahedron Great retrosnub icosidodecahedron.png | 2 3/25/3 Great retrosnub icosidodecahedron vertfig.png (34.5/2)/2IC90W117U74K7960150922Yes37(20+60){3}+12{5/2}
Great snub dodecicosidodecahedron Great snub dodecicosidodecahedron.png |5/35/2 3 Great snub dodecicosidodecahedron vertfig.png 33.5/3.3.5/2IC80W115U64K6960180104−16Yes10(20+60){3}+(12+12){5/2}
Snub icosidodecadodecahedron Snub icosidodecadodecahedron.png |5/3 3 5 Snub icosidodecadodecahedron vertfig.png 33.5.3.5/3IC58W112U46K5160180104−16Yes4(20+60){3}+12{5}+12{5/2}
Small snub icosicosidodecahedron Small snub icosicosidodecahedron.png |5/2 3 3 Small snub icosicosidodecahedron vertfig.png 35.5/2IhC41W110U32K3760180112−8Yes2(40+60){3}+12{5/2}
Small retrosnub icosicosidodecahedron Small retrosnub icosicosidodecahedron.png |3/23/25/2 Small retrosnub icosicosidodecahedron vertfig.png (35.5/2)/2IhC91W118U72K7760180112−8Yes38(40+60){3}+12{5/2}
Great dirhombicosidodecahedron Great dirhombicosidodecahedron.png |3/25/3 3 5/2 Great dirhombicosidodecahedron vertfig.png (4.5/3.4.3.4.5/2.4.3/2)/2IhC92W119U75K8060240124−56No 40{3}+60{4}+24{5/2}

Special case

NameImage Wyth
sym
Vert.
fig
Sym.C#W#U#K#Vert.EdgesFacesChi Orient-
able?
Dens.Faces by type
Great disnub
dirhombidodecahedron
Great disnub dirhombidodecahedron.png | (3/2) 5/3 (3) 5/2 Great disnub dirhombidodecahedron vertfig.png
(5/2.4.3.3.3.4. 5/3.
4.3/2.3/2.3/2.4)/2
Ih60360 (*)204−96No 120{3}+60{4}+24{5/2}

The great disnub dirhombidodecahedron has 240 of its 360 edges coinciding in space in 120 pairs. Because of this edge-degeneracy, it is not always considered to be a uniform polyhedron.

Column key

See also

References