Great disnub dirhombidodecahedron

Last updated
Great disnub dirhombidodecahedron
Great disnub dirhombidodecahedron.png
Type Uniform star polyhedron
Elements F = 204, E = 360
V = 60 (χ = −96)
Faces by sides120{3}+60{4}+24{5/2}
Coxeter diagram {{{Skilling-Coxeter}}}
Wythoff symbol | (3/2) 5/3 (3) 5/2
Symmetry group Ih, [5,3], *532
Index references U -, C -, W -
Dual polyhedron Great disnub dirhombidodecacron
Vertex figure Great disnub dirhombidodecahedron vertfig.png
(5/2.4.3.3.3.4. 5/3.4.3/2.3/2.3/2.4)/2
Bowers acronym Gidisdrid
3D model of a great disnub dirhombidodecahedron Great disnub dirhombidodecahedron.stl
3D model of a great disnub dirhombidodecahedron

In geometry, the great disnub dirhombidodecahedron, also called Skilling's figure, is a degenerate uniform star polyhedron.

Contents

It was proven in 1970 that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered another degenerate example, the great disnub dirhombidodecahedron, by relaxing the condition that edges must be single. More precisely, he allowed any even number of faces to meet at each edge, as long as the set of faces couldn't be separated into two connected sets (Skilling, 1975). Due to its geometric realization having some double edges where 4 faces meet, it is considered a degenerate uniform polyhedron but not strictly a uniform polyhedron.

The number of edges is ambiguous, because the underlying abstract polyhedron has 360 edges, but 120 pairs of these have the same image in the geometric realization, so that the geometric realization has 120 single edges and 120 double edges where 4 faces meet, for a total of 240 edges. The Euler characteristic of the abstract polyhedron is −96. If the pairs of coinciding edges in the geometric realization are considered to be single edges, then it has only 240 edges and Euler characteristic 24.

The vertex figure has 4 square faces passing through the center of the model.

It may be constructed as the exclusive or (blend) of the great dirhombicosidodecahedron and compound of twenty octahedra.

It shares the same edge arrangement as the great dirhombicosidodecahedron, but has a different set of triangular faces. The vertices and edges are also shared with the uniform compounds of twenty octahedra or twenty tetrahemihexahedra. 180 of the edges are shared with the great snub dodecicosidodecahedron.

Nonuniform2-rhombicosidodecahedron.png
Convex hull
Great snub dodecicosidodecahedron.png
Great snub dodecicosidodecahedron
Great dirhombicosidodecahedron.png
Great dirhombicosidodecahedron
Great disnub dirhombidodecahedron.png
Great disnub dirhombidodecahedron
UC14-20 octahedra.png
Compound of twenty octahedra
UC19-20 tetrahemihexahedron.png
Compound of twenty tetrahemihexahedra

Dual polyhedron

The great disnub dirhombidodecacron Great dirhombicosidodecacron.png
The great disnub dirhombidodecacron

The dual of the great disnub dirhombidodecahedron is called the great disnub dirhombidodecacron. It is a nonconvex infinite isohedral polyhedron.

Like the visually identical great dirhombicosidodecacron in Magnus Wenninger's Dual Models, it is represented with intersecting infinite prisms passing through the model center, cut off at a certain point that is convenient for the maker. Wenninger suggested these figures are members of a new class of stellation polyhedra, called stellation to infinity. However, he also acknowledged that strictly speaking they are not polyhedra because their construction does not conform to the usual definitions.

Great disnub dirhombidodecahedron.png
Traditional filling
Great disnub dirhombidodecahedron 2.png
Modulo-2 filling

See also

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.

<span class="mw-page-title-main">Tetrahemihexahedron</span> Polyhedron with 7 faces

In geometry, the tetrahemihexahedron or hemicuboctahedron is a uniform star polyhedron, indexed as U4. It has 7 faces (4 triangles and 3 squares), 12 edges, and 6 vertices. Its vertex figure is a crossed quadrilateral. Its Coxeter–Dynkin diagram is (although this is a double covering of the tetrahemihexahedron).

<span class="mw-page-title-main">Great dirhombicosidodecahedron</span> Uniform star polyhedron with 124 faces

In geometry, the great dirhombicosidodecahedron (or great snub disicosidisdodecahedron) is a nonconvex uniform polyhedron, indexed last as U75. It has 124 faces (40 triangles, 60 squares, and 24 pentagrams), 240 edges, and 60 vertices.

<span class="mw-page-title-main">Final stellation of the icosahedron</span> Outermost stellation of the icosahedron

In geometry, the complete or final stellation of the icosahedron is the outermost stellation of the icosahedron, and is "complete" and "final" because it includes all of the cells in the icosahedron's stellation diagram. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron, or inside of it.

<span class="mw-page-title-main">Small stellated dodecahedron</span> A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

In geometry, a snub polyhedron is a polyhedron obtained by performing a snub operation: alternating a corresponding omnitruncated or truncated polyhedron, depending on the definition. Some, but not all, authors include antiprisms as snub polyhedra, as they are obtained by this construction from a degenerate "polyhedron" with only two faces.

<span class="mw-page-title-main">Octahemioctahedron</span> Uniform star polyhedron with 12 faces

In geometry, the octahemioctahedron or allelotetratetrahedron is a nonconvex uniform polyhedron, indexed as U3. It has 12 faces (8 triangles and 4 hexagons), 24 edges and 12 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great dodecahemicosahedron</span> Polyhedron with 22 faces

In geometry, the great dodecahemicosahedron (or small dodecahemiicosahedron) is a nonconvex uniform polyhedron, indexed as U65. It has 22 faces (12 pentagons and 10 hexagons), 60 edges, and 30 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great snub dodecicosidodecahedron</span> Polyhedron with 104 faces

In geometry, the great snub dodecicosidodecahedron (or great snub dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U64. It has 104 faces (80 triangles and 24 pentagrams), 180 edges, and 60 vertices. It has Coxeter diagram, . It has the unusual feature that its 24 pentagram faces occur in 12 coplanar pairs.

<span class="mw-page-title-main">Uniform star polyhedron</span> Self-intersecting uniform polyhedron

In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, or both.

<span class="mw-page-title-main">Compound of twenty tetrahemihexahedra</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 20 tetrahemihexahedra. It is chiral with icosahedral symmetry (I).

<span class="mw-page-title-main">Compound of twenty octahedra</span> Polyhedral compound

The compound of twenty octahedra is a uniform polyhedron compound. It's composed of a symmetric arrangement of 20 octahedra. It is a special case of the compound of 20 octahedra with rotational freedom, in which pairs of octahedral vertices coincide.

References