Great rhombidodecahedron

Last updated
Great rhombidodecahedron
Great rhombidodecahedron.png
Type Uniform star polyhedron
Elements F = 42, E = 120
V = 60 (χ = 18)
Faces by sides30{4}+12{10/3}
Wythoff symbol 2 5/3 (3/2 5/4) |
Symmetry group Ih, [5,3], *532
Index references U 73, C 89, W 109
Dual polyhedron Great rhombidodecacron
Vertex figure Great rhombidodecahedron vertfig.png
4.10/3.4/3.10/7
Bowers acronym Gird
3D model of a great rhombidodecahedron Great rhombidodecahedron.stl
3D model of a great rhombidodecahedron

In geometry, the great rhombidodecahedron is a nonconvex uniform polyhedron, indexed as U73. It has 42 faces (30 squares, 12 decagrams), 120 edges and 60 vertices. [1] Its vertex figure is a crossed quadrilateral.

Contents

It shares its vertex arrangement with the truncated great dodecahedron and the uniform compounds of 6 or 12 pentagonal prisms. It additionally shares its edge arrangement with the nonconvex great rhombicosidodecahedron (having the square faces in common), and with the great dodecicosidodecahedron (having the decagrammic faces in common).

Uniform great rhombicosidodecahedron.png
Nonconvex great rhombicosidodecahedron
Great dodecicosidodecahedron.png
Great dodecicosidodecahedron
Great rhombidodecahedron.png
Great rhombidodecahedron
Great truncated dodecahedron.png
Truncated great dodecahedron
UC34-6 pentagonal prisms.png
Compound of six pentagonal prisms
UC35-12 pentagonal prisms.png
Compound of twelve pentagonal prisms
Great rhombidodecahedron.png
Traditional filling
Great rhombidodecahedron 2.png
Modulo-2 filling


See also

Related Research Articles

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Cubohemioctahedron</span> Polyhedron with 10 faces

In geometry, the cubohemioctahedron is a nonconvex uniform polyhedron, indexed as U15. It has 10 faces (6 squares and 4 regular hexagons), 24 edges and 12 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Small rhombihexahedron</span> Polyhedron with 18 faces

In geometry, the small rhombihexahedron (or small rhombicube) is a nonconvex uniform polyhedron, indexed as U18. It has 18 faces (12 squares and 6 octagons), 48 edges, and 24 vertices. Its vertex figure is an antiparallelogram.

<span class="mw-page-title-main">Nonconvex great rhombicuboctahedron</span> Nonconvex uniform polyhedron with 26 faces

In geometry, the nonconvex great rhombicuboctahedron is a nonconvex uniform polyhedron, indexed as U17. It has 26 faces (8 triangles and 18 squares), 48 edges, and 24 vertices. It is represented by the Schläfli symbol rr{4,32} and Coxeter-Dynkin diagram of . Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Small dodecicosahedron</span> Polyhedron with 32 faces

In geometry, the small dodecicosahedron (or small dodekicosahedron) is a nonconvex uniform polyhedron, indexed as U50. It has 32 faces (20 hexagons and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Small dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the small dodecicosidodecahedron (or small dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U33. It has 44 faces (20 triangles, 12 pentagons, and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Rhombicosahedron</span>

In geometry, the rhombicosahedron is a nonconvex uniform polyhedron, indexed as U56. It has 50 faces (30 squares and 20 hexagons), 120 edges and 60 vertices. Its vertex figure is an antiparallelogram.

<span class="mw-page-title-main">Great icosicosidodecahedron</span> Polyhedron with 52 faces

In geometry, the great icosicosidodecahedron (or great icosified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U48. It has 52 faces (20 triangles, 12 pentagrams, and 20 hexagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Small rhombidodecahedron</span> Polyhedron with 42 faces

In geometry, the small rhombidodecahedron is a nonconvex uniform polyhedron, indexed as U39. It has 42 faces (30 squares and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great cubicuboctahedron</span>

In geometry, the great cubicuboctahedron is a nonconvex uniform polyhedron, indexed as U14. It has 20 faces (8 triangles, 6 squares and 6 octagrams), 48 edges, and 24 vertices. Its square faces and its octagrammic faces are parallel to those of a cube, while its triangular faces are parallel to those of an octahedron: hence the name cubicuboctahedron. The great suffix serves to distinguish it from the small cubicuboctahedron, which also has faces in the aforementioned directions.

<span class="mw-page-title-main">Truncated great dodecahedron</span> Polyhedron with 24 faces

In geometry, the truncated great dodecahedron is a nonconvex uniform polyhedron, indexed as U37. It has 24 faces (12 pentagrams and 12 decagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{5,5/2}.

<span class="mw-page-title-main">Small stellated truncated dodecahedron</span> Polyhedron with 24 faces

In geometry, the small stellated truncated dodecahedron (or quasitruncated small stellated dodecahedron or small stellatruncated dodecahedron) is a nonconvex uniform polyhedron, indexed as U58. It has 24 faces (12 pentagons and 12 decagrams), 90 edges, and 60 vertices. It is given a Schläfli symbol t{53,5}, and Coxeter diagram .

<span class="mw-page-title-main">Great ditrigonal dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the great ditrigonal dodecicosidodecahedron (or great dodekified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U42. It has 44 faces (20 triangles, 12 pentagons, and 12 decagrams), 120 edges, and 60 vertices. Its vertex figure is an isosceles trapezoid.

<span class="mw-page-title-main">Great dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the great dodecicosidodecahedron (or great dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U61. It has 44 faces (20 triangles, 12 pentagrams and 12 decagrams), 120 edges and 60 vertices.

<span class="mw-page-title-main">Rhombidodecadodecahedron</span>

In geometry, the rhombidodecadodecahedron is a nonconvex uniform polyhedron, indexed as U38. It has 54 faces (30 squares, 12 pentagons and 12 pentagrams), 120 edges and 60 vertices. It is given a Schläfli symbol t0,2{52,5}, and by the Wythoff construction this polyhedron can also be named a cantellated great dodecahedron.

<span class="mw-page-title-main">Great dodecahemidodecahedron</span> Polyhedron with 18 faces

In geometry, the great dodecahemidodecahedron is a nonconvex uniform polyhedron, indexed as U70. It has 18 faces (12 pentagrams and 6 decagrams), 60 edges, and 30 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Small ditrigonal dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the small ditrigonal dodecicosidodecahedron (or small dodekified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U43. It has 44 faces (20 triangles, 12 pentagrams and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Nonconvex great rhombicosidodecahedron</span> Polyhedron with 62 faces

In geometry, the nonconvex great rhombicosidodecahedron is a nonconvex uniform polyhedron, indexed as U67. It has 62 faces (20 triangles, 30 squares and 12 pentagrams), 120 edges, and 60 vertices. It is also called the quasirhombicosidodecahedron. It is given a Schläfli symbol rr{53,3}. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great rhombihexahedron</span> Polyhedron with 18 faces

In geometry, the great rhombihexahedron (or great rhombicube) is a nonconvex uniform polyhedron, indexed as U21. It has 18 faces (12 squares and 6 octagrams), 48 edges, and 24 vertices. Its dual is the great rhombihexacron. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great dodecicosahedron</span> Polyhedron with 32 faces

In geometry, the great dodecicosahedron (or great dodekicosahedron) is a nonconvex uniform polyhedron, indexed as U63. It has 32 faces (20 hexagons and 12 decagrams), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

References

  1. Maeder, Roman. "73: great rhombidodecahedron". MathConsult.{{cite web}}: CS1 maint: url-status (link)