Uniform tilings in hyperbolic plane

Last updated
Examples of uniform tilings
SphericalEuclideanHyperbolic
Uniform tiling 532-t0.png
{5,3}
5.5.5
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.png
{6,3}
6.6.6
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Heptagonal tiling.svg
{7,3}
7.7.7
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
H2-I-3-dual.svg
{∞,3}
∞.∞.∞
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png
Regular tilings {p,q} of the sphere, Euclidean plane, and hyperbolic plane using regular pentagonal, hexagonal and heptagonal and apeirogonal faces.
Uniform tiling 532-t01.png
t{5,3}
10.10.3
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t01.png
t{6,3}
12.12.3
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Truncated heptagonal tiling.svg
t{7,3}
14.14.3
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 23i-3.png
t{∞,3}
∞.∞.3
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
Truncated tilings have 2p.2p.q vertex figures from regular {p,q}.
Uniform tiling 532-t1.png
r{5,3}
3.5.3.5
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
r{6,3}
3.6.3.6
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Triheptagonal tiling.svg
r{7,3}
3.7.3.7
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 23i-2.png
r{∞,3}
3.∞.3.∞
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
Quasiregular tilings are similar to regular tilings but alternate two types of regular polygon around each vertex.
Uniform tiling 532-t02.png
rr{5,3}
3.4.5.4
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t02.png
rr{6,3}
3.4.6.4
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombitriheptagonal tiling.svg
rr{7,3}
3.4.7.4
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png
H2 tiling 23i-5.png
rr{∞,3}
3.4.∞.4
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png
Semiregular tilings have more than one type of regular polygon.
Uniform tiling 532-t012.png
tr{5,3}
4.6.10
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t012.svg
tr{6,3}
4.6.12
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Truncated triheptagonal tiling.svg
tr{7,3}
4.6.14
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.png
H2 tiling 23i-7.png
tr{∞,3}
4.6.∞
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Omnitruncated tilings have three or more even-sided regular polygons.

In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.

Contents

Uniform tilings can be identified by their vertex configuration, a sequence of numbers representing the number of sides of the polygons around each vertex. For example, 7.7.7 represents the heptagonal tiling which has 3 heptagons around each vertex. It is also regular since all the polygons are the same size, so it can also be given the Schläfli symbol {7,3}.

Uniform tilings may be regular (if also face- and edge-transitive), quasi-regular (if edge-transitive but not face-transitive) or semi-regular (if neither edge- nor face-transitive). For right triangles (p q 2), there are two regular tilings, represented by Schläfli symbol {p,q} and {q,p}.

Wythoff construction

Example Wythoff construction with right triangles (r = 2) and the 7 generator points. Lines to the active mirrors are colored red, yellow, and blue with the 3 nodes opposite them as associated by the Wythoff symbol. Wythoffian construction diagram.svg
Example Wythoff construction with right triangles (r = 2) and the 7 generator points. Lines to the active mirrors are colored red, yellow, and blue with the 3 nodes opposite them as associated by the Wythoff symbol.

There are an infinite number of uniform tilings based on the Schwarz triangles (p q r) where 1/p + 1/q + 1/r < 1, where p, q, r are each orders of reflection symmetry at three points of the fundamental domain triangle – the symmetry group is a hyperbolic triangle group.

Each symmetry family contains 7 uniform tilings, defined by a Wythoff symbol or Coxeter-Dynkin diagram, 7 representing combinations of 3 active mirrors. An 8th represents an alternation operation, deleting alternate vertices from the highest form with all mirrors active.

Families with r = 2 contain regular hyperbolic tilings, defined by a Coxeter group such as [7,3], [8,3], [9,3], ... [5,4], [6,4], ....

Hyperbolic families with r = 3 or higher are given by (p q r) and include (4 3 3), (5 3 3), (6 3 3) ... (4 4 3), (5 4 3), ... (4 4 4)....

Hyperbolic triangles (p q r) define compact uniform hyperbolic tilings. In the limit any of p, q or r can be replaced by ∞ which defines a paracompact hyperbolic triangle and creates uniform tilings with either infinite faces (called apeirogons) that converge to a single ideal point, or infinite vertex figure with infinitely many edges diverging from the same ideal point.

More symmetry families can be constructed from fundamental domains that are not triangles.

Selected families of uniform tilings are shown below (using the Poincaré disk model for the hyperbolic plane). Three of them – (7 3 2), (5 4 2), and (4 3 3) – and no others, are minimal in the sense that if any of their defining numbers is replaced by a smaller integer the resulting pattern is either Euclidean or spherical rather than hyperbolic; conversely, any of the numbers can be increased (even to infinity) to generate other hyperbolic patterns.

Each uniform tiling generates a dual uniform tiling, with many of them also given below.

Right triangle domains

There are infinitely many (p q 2) triangle group families. This article shows the regular tiling up to p, q = 8, and uniform tilings in 12 families: (7 3 2), (8 3 2), (5 4 2), (6 4 2), (7 4 2), (8 4 2), (5 5 2), (6 5 2) (6 6 2), (7 7 2), (8 6 2), and (8 8 2).

Regular hyperbolic tilings

The simplest set of hyperbolic tilings are regular tilings {p,q}, which exist in a matrix with the regular polyhedra and Euclidean tilings. The regular tiling {p,q} has a dual tiling {q,p} across the diagonal axis of the table. Self-dual tilings {2,2}, {3,3}, {4,4}, {5,5}, etc. pass down the diagonal of the table.

Regular hyperbolic tiling table
Spherical (improper/Platonic)/Euclidean/hyperbolic (Poincaré disc: compact/paracompact/noncompact) tessellations with their Schläfli symbol
p \ q2345678......iπ/λ
2 Spherical digonal hosohedron.svg
{2,2}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 2x.pngCDel node.png
Spherical trigonal hosohedron.svg
{2,3}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.png
Spherical square hosohedron.svg
{2,4}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 4.pngCDel node.png
Spherical pentagonal hosohedron.svg
{2,5}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.png
Spherical hexagonal hosohedron.svg
{2,6}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 6.pngCDel node.png
Spherical heptagonal hosohedron.svg
{2,7}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 7.pngCDel node.png
Spherical octagonal hosohedron.svg
{2,8}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 8.pngCDel node.png
E2 tiling 22i-4.png
{2,}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 22i-4.png
{2,iπ/λ}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel ultra.pngCDel node.png
3 Trigonal dihedron.png

{3,2}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node.png
Uniform tiling 332-t0-1-.png
(tetrahedron)
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 432-t2.png
(octahedron)
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 532-t2.png
(icosahedron)
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 63-t2.png
(deltille)
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 37-t0.png

{3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 38-t0.png

{3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 23i-4.png

{3,}
CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2312j-4.png

{3,iπ/λ}
CDel node 1.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png
4 Tetragonal dihedron.png

{4,2}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2x.pngCDel node.png
Uniform tiling 432-t0.png
(cube)
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.svg
(quadrille)
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 45-t0.png

{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 46-t0.png

{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 47-t0.png

{4,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 48-t0.png

{4,8}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 24i-4.png

{4,}
CDel node 1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2412j-4.png
{4,iπ/λ}
CDel node 1.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png
5 Pentagonal dihedron.png

{5,2}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 2x.pngCDel node.png
Uniform tiling 532-t0.png
(dodecahedron)
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
H2-5-4-dual.svg

{5,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 55-t0.png

{5,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 56-t0.png

{5,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 57-t0.png

{5,7}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 58-t0.png

{5,8}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 25i-4.png

{5,}
CDel node 1.pngCDel 5.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2512j-4.png
{5,iπ/λ}
CDel node 1.pngCDel 5.pngCDel node.pngCDel ultra.pngCDel node.png
6 Hexagonal dihedron.png

{6,2}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2x.pngCDel node.png
Uniform tiling 63-t0.svg
(hextille)
{6,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 64-t0.png

{6,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 65-t0.png

{6,5}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 66-t2.png

{6,6}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 67-t0.png

{6,7}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 68-t0.png

{6,8}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 26i-4.png

{6,}
CDel node 1.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2612j-4.png
{6,iπ/λ}
CDel node 1.pngCDel 6.pngCDel node.pngCDel ultra.pngCDel node.png
7 {7,2}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 2x.pngCDel node.png
Heptagonal tiling.svg
{7,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 74-t0.png
{7,4}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 75-t0.png
{7,5}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 76-t0.png
{7,6}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 77-t2.png
{7,7}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 78-t0.png
{7,8}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 27i-4.png
{7,}
CDel node 1.pngCDel 7.pngCDel node.pngCDel infin.pngCDel node.png
{7,iπ/λ}
CDel node 1.pngCDel 7.pngCDel node.pngCDel ultra.pngCDel node.png
8 {8,2}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 2x.pngCDel node.png
H2-8-3-dual.svg
{8,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 84-t0.png
{8,4}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 85-t0.png
{8,5}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 86-t0.png
{8,6}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 87-t0.png
{8,7}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 88-t2.png
{8,8}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 28i-4.png
{8,}
CDel node 1.pngCDel 8.pngCDel node.pngCDel infin.pngCDel node.png
{8,iπ/λ}
CDel node 1.pngCDel 8.pngCDel node.pngCDel ultra.pngCDel node.png
...
E2 tiling 22i-1.png
{,2}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 2x.pngCDel node.png
H2-I-3-dual.svg
{,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 24i-1.png
{,4}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 25i-1.png
{,5}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 26i-1.png
{,6}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 27i-1.png
{,7}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 28i-1.png
{,8}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 2ii-1.png
{,}
CDel node 1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2i12j-4.png
{,iπ/λ}
CDel node 1.pngCDel infin.pngCDel node.pngCDel ultra.pngCDel node.png
...
iπ/λ H2 tiling 22i-1.png
{iπ/λ,2}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 2x.pngCDel node.png
H2 tiling 2312j-1.png
{iπ/λ,3}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 2412j-1.png
{iπ/λ,4}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 2512j-1.png
{iπ/λ,5}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 2612j-1.png
{iπ/λ,6}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 6.pngCDel node.png
{iπ/λ,7}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 7.pngCDel node.png
{iπ/λ,8}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 2i12j-1.png
{iπ/λ,}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 212j12j-1.png

{iπ/λ, iπ/λ}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel ultra.pngCDel node.png

(7 3 2)

The (7 3 2) triangle group, Coxeter group [7,3], orbifold (*732) contains these uniform tilings:

Uniform heptagonal/triangular tilings
Symmetry: [7,3], (*732) [7,3]+, (732)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 7.pngCDel node h.pngCDel 3.pngCDel node h.png
Heptagonal tiling.svg Truncated heptagonal tiling.svg Triheptagonal tiling.svg Truncated order-7 triangular tiling.svg Order-7 triangular tiling.svg Rhombitriheptagonal tiling.svg Truncated triheptagonal tiling.svg Snub triheptagonal tiling.svg
{7,3} t{7,3} r{7,3} t{3,7} {3,7} rr{7,3} tr{7,3} sr{7,3}
Uniform duals
CDel node f1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 7.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Order-7 triangular tiling.svg Order-7 triakis triangular tiling.svg 7-3 rhombille tiling.svg Heptakis heptagonal tiling.svg Heptagonal tiling.svg Deltoidal triheptagonal tiling.svg 3-7 kisrhombille.svg 7-3 floret pentagonal tiling.svg
V73 V3.14.14V3.7.3.7V6.6.7 V37 V3.4.7.4 V4.6.14 V3.3.3.3.7

(8 3 2)

The (8 3 2) triangle group, Coxeter group [8,3], orbifold (*832) contains these uniform tilings:

Uniform octagonal/triangular tilings
Symmetry: [8,3], (*832) [8,3]+
(832)
[1+,8,3]
(*443)
[8,3+]
(3*4)
{8,3} t{8,3} r{8,3} t{3,8} {3,8} rr{8,3}
s2{3,8}
tr{8,3} sr{8,3} h{8,3} h2{8,3} s{3,8}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel label4.pngCDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel label4.pngCDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node.png or CDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png or CDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel label4.pngCDel branch hh.pngCDel split2.pngCDel node h.png
H2-8-3-dual.svg H2-8-3-trunc-dual.svg H2-8-3-rectified.svg
Uniform tiling 433-t01.png
H2-8-3-trunc-primal.svg
Uniform tiling 433-t012.png
H2-8-3-primal.svg
Uniform tiling 433-t2.png
H2-8-3-cantellated.svg H2-8-3-omnitruncated.svg H2-8-3-snub.svg Uniform tiling 433-t0.png Uniform tiling 433-t1.png Uniform tiling 433-t02.png Uniform tiling 433-t12.png Uniform tiling 433-snub1.png
Uniform tiling 433-snub2.png
Uniform duals
V83 V3.16.16V3.8.3.8V6.6.8 V38 V3.4.8.4 V4.6.16 V34.8V(3.4)3V8.6.6V35.4
CDel node f1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 3.pngCDel node fh.png
H2-8-3-primal.svg H2-8-3-kis-primal.svg H2-8-3-rhombic.svg H2-8-3-kis-dual.svg H2-8-3-dual.svg H2-8-3-deltoidal.svg H2-8-3-kisrhombille.svg H2-8-3-floret.svg Uniform dual tiling 433-t0.png Uniform dual tiling 433-t01.png Uniform dual tiling 433-snub.png

(5 4 2)

The (5 4 2) triangle group, Coxeter group [5,4], orbifold (*542) contains these uniform tilings:

Uniform pentagonal/square tilings
Symmetry: [5,4], (*542) [5,4]+, (542)[5+,4], (5*2)[5,4,1+], (*552)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 4.pngCDel node.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node h.png
H2-5-4-dual.svg H2-5-4-trunc-dual.svg H2-5-4-rectified.svg H2-5-4-trunc-primal.svg H2-5-4-primal.svg H2-5-4-cantellated.svg H2-5-4-omnitruncated.svg H2-5-4-snub.svg Uniform tiling 542-h01.png Uniform tiling 552-t0.png
{5,4} t{5,4} r{5,4} 2t{5,4}=t{4,5} 2r{5,4}={4,5} rr{5,4} tr{5,4} sr{5,4} s{5,4} h{4,5}
Uniform duals
CDel node f1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel node fh.pngCDel 5.pngCDel node fh.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel 5.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node fh.png
H2-5-4-primal.svg H2-5-4-kis-primal.svg H2-5-4-rhombic.svg H2-5-4-kis-dual.svg H2-5-4-dual.svg H2-5-4-deltoidal.svg H2-5-4-kisrhombille.svg H2-5-4-floret.svg Uniform tiling 552-t2.png
V54 V4.10.10V4.5.4.5V5.8.8 V45 V4.4.5.4 V4.8.10 V3.3.4.3.5V3.3.5.3.5V55

(6 4 2)

The (6 4 2) triangle group, Coxeter group [6,4], orbifold (*642) contains these uniform tilings. Because all the elements are even, each uniform dual tiling one represents the fundamental domain of a reflective symmetry: *3333, *662, *3232, *443, *222222, *3222, and *642 respectively. As well, all 7 uniform tiling can be alternated, and those have duals as well.

Uniform tetrahexagonal tilings
Symmetry: [6,4], (*642)
(with [6,6] (*662), [(4,3,3)] (*443) , [,3,] (*3222) index 2 subsymmetries)
(And [(,3,,3)] (*3232) index 4 subsymmetry)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
= CDel node 1.pngCDel split1-66.pngCDel nodes.png
CDel 2.png
= CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes.png
= CDel branch 11.pngCDel 3a3b-cross.pngCDel branch 11.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.png
= CDel node 1.pngCDel split1-66.pngCDel nodes 11.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.png
= CDel node.pngCDel split1-66.pngCDel nodes 11.png
= CDel branch 11.pngCDel split2-44.pngCDel node.png
CDel 2.png
= CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes 11.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel 2.png
= CDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
= CDel branch.pngCDel split2-44.pngCDel node 1.png
= CDel branch.pngCDel 2a2b-cross.pngCDel nodes 11.png
= CDel branchu 11.pngCDel 2.pngCDel branchu 11.pngCDel 2.pngCDel branchu 11.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
CDel 2.png
= CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 246-1.png H2 tiling 246-3.png H2 tiling 246-2.png H2 tiling 246-6.png H2 tiling 246-4.png H2 tiling 246-5.png H2 tiling 246-7.png
{6,4} t{6,4} r{6,4} t{4,6} {4,6} rr{6,4} tr{6,4}
Uniform duals
CDel node f1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 6.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 6.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 246b.png H2chess 246f.png H2chess 246a.png H2chess 246e.png H2chess 246c.png H2chess 246d.png H2checkers 246.png
V64 V4.12.12V(4.6)2V6.8.8 V46 V4.4.4.6 V4.8.12
Alternations
[1+,6,4]
(*443)
[6+,4]
(6*2)
[6,1+,4]
(*3222)
[6,4+]
(4*3)
[6,4,1+]
(*662)
[(6,4,2+)]
(2*32)
[6,4]+
(642)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
= CDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node.png
= CDel node h.pngCDel split1-66.pngCDel branch hh.pngCDel label2.png
CDel node.pngCDel 6.pngCDel node h1.pngCDel 4.pngCDel node.png
= CDel branch 10.pngCDel 2a2b-cross.pngCDel nodes 10.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node h.png
= CDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.png
= CDel node.pngCDel split1-66.pngCDel nodes 10lu.png
CDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h.png
= CDel branch hh.pngCDel 2xa2xb-cross.pngCDel branch hh.pngCDel label2.png
CDel node h.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 443-t0.png Uniform tiling 64-h02.png Uniform tiling 64-h1.png Uniform tiling 443-snub2.png Uniform tiling 66-t0.png Uniform tiling 3.4.4.4.4.png Uniform tiling 64-snub.png
h{6,4} s{6,4} hr{6,4} s{4,6} h{4,6} hrr{6,4} sr{6,4}

(7 4 2)

The (7 4 2) triangle group, Coxeter group [7,4], orbifold (*742) contains these uniform tilings:

Uniform heptagonal/square tilings
Symmetry: [7,4], (*742) [7,4]+, (742)[7+,4], (7*2)[7,4,1+], (*772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node.pngCDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 74-t0.png Uniform tiling 74-t01.png Uniform tiling 74-t1.png Uniform tiling 74-t12.png Uniform tiling 74-t2.png Uniform tiling 74-t02.png Uniform tiling 74-t012.png Uniform tiling 74-snub.png Uniform tiling 74-h01.png Uniform tiling 77-t0.png
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
Uniform duals
CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node fh.png
Uniform tiling 74-t2.png Hyperbolic domains 772.png Ord74 qreg rhombic til.png Order4 heptakis heptagonal til.png Uniform tiling 74-t0.png Deltoidal tetraheptagonal til.png Hyperbolic domains 742.png Uniform tiling 77-t2.png
V74V4.14.14V4.7.4.7V7.8.8V47V4.4.7.4V4.8.14V3.3.4.3.7V3.3.7.3.7V77

(8 4 2)

The (8 4 2) triangle group, Coxeter group [8,4], orbifold (*842) contains these uniform tilings. Because all the elements are even, each uniform dual tiling one represents the fundamental domain of a reflective symmetry: *4444, *882, *4242, *444, *22222222, *4222, and *842 respectively. As well, all 7 uniform tiling can be alternated, and those have duals as well.

Uniform octagonal/square tilings
[8,4], (*842)
(with [8,8] (*882), [(4,4,4)] (*444) , [,4,] (*4222) index 2 subsymmetries)
(And [(,4,,4)] (*4242) index 4 subsymmetry)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
= CDel node 1.pngCDel split1-88.pngCDel nodes.png
CDel 2.png
= CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel nodes.png
= CDel label4.pngCDel branch 11.pngCDel 4a4b-cross.pngCDel branch 11.pngCDel label4.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
= CDel node 1.pngCDel split1-88.pngCDel nodes 11.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
= CDel node.pngCDel split1-88.pngCDel nodes 11.png
= CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel 2.png
= CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel branch 11.pngCDel label4.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel 2.png
= CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
= CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node 1.png
= CDel label4.pngCDel branch.pngCDel 2a2b-cross.pngCDel nodes 11.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
CDel 2.png
= CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 248-1.png H2 tiling 248-3.png H2 tiling 248-2.png H2 tiling 248-6.png H2 tiling 248-4.png H2 tiling 248-5.png H2 tiling 248-7.png
{8,4} t{8,4}
r{8,4} 2t{8,4}=t{4,8} 2r{8,4}={4,8} rr{8,4} tr{8,4}
Uniform duals
CDel node f1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 248b.png H2chess 248f.png H2chess 248a.png H2chess 248e.png H2chess 248c.png H2chess 248d.png H2checkers 248.png
V84 V4.16.16V(4.8)2 V8.8.8 V48 V4.4.4.8 V4.8.16
Alternations
[1+,8,4]
(*444)
[8+,4]
(8*2)
[8,1+,4]
(*4222)
[8,4+]
(4*4)
[8,4,1+]
(*882)
[(8,4,2+)]
(2*42)
[8,4]+
(842)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
= CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node.png
= CDel node h.pngCDel split1-88.pngCDel nodes hh.png
CDel node.pngCDel 8.pngCDel node h1.pngCDel 4.pngCDel node.png
= CDel label4.pngCDel branch 10.pngCDel 2a2b-cross.pngCDel nodes 10.png
CDel node.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
= CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h1.png
= CDel node.pngCDel split1-88.pngCDel nodes 10lu.png
CDel node h.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h.png
= CDel label4.pngCDel branch hh.pngCDel 2a2b-cross.pngCDel nodes hh.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 444-t0.png Uniform tiling 84-h01.png Uniform tiling 443-t1.png Uniform tiling 444-snub.png Uniform tiling 88-t0.png H2-5-4-primal.svg Uniform tiling 84-snub.png
h{8,4} s{8,4} hr{8,4} s{4,8} h{4,8} hrr{8,4} sr{8,4}
Alternation duals
CDel node fh.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node fh.pngCDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node fh.png
Uniform tiling 88-t1.png Uniform tiling 66-t1.png Uniform dual tiling 433-t0.png Uniform tiling 88-t2.png H2-5-4-dual.svg
V(4.4)4V3.(3.8)2V(4.4.4)2V(3.4)3V88V4.44V3.3.4.3.8

(5 5 2)

The (5 5 2) triangle group, Coxeter group [5,5], orbifold (*552) contains these uniform tilings:

Uniform pentapentagonal tilings
Symmetry: [5,5], (*552) [5,5]+, (552)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 5.pngCDel node 1.png
CDel node h.pngCDel 5.pngCDel node h.pngCDel 5.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 5.pngCDel node h.png
Uniform tiling 552-t0.png Uniform tiling 552-t01.png Uniform tiling 552-t1.png Uniform tiling 552-t12.png Uniform tiling 552-t2.png Uniform tiling 552-t02.png Uniform tiling 552-t012.png Uniform tiling 552-snub.png
Order-5 pentagonal tiling
{5,5}
Truncated order-5 pentagonal tiling
t{5,5}
Order-4 pentagonal tiling
r{5,5}
Truncated order-5 pentagonal tiling
2t{5,5} = t{5,5}
Order-5 pentagonal tiling
2r{5,5} = {5,5}
Tetrapentagonal tiling
rr{5,5}
Truncated order-4 pentagonal tiling
tr{5,5}
Snub pentapentagonal tiling
sr{5,5}
Uniform duals
CDel node f1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel node f1.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel node.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel node.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node f1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node f1.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node f1.pngCDel node f1.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node f1.pngCDel node fh.pngCDel 5.pngCDel node fh.pngCDel 5.pngCDel node fh.png
Uniform tiling 552-t2.png Order5 pentakis pentagonal til.png H2-5-4-primal.svg Order5 pentakis pentagonal til.png Uniform tiling 552-t0.png H2-5-4-rhombic.svg H2-5-4-kis-primal.svg
Order-5 pentagonal tiling
V5.5.5.5.5
V5.10.10 Order-5 square tiling
V5.5.5.5
V5.10.10 Order-5 pentagonal tiling
V5.5.5.5.5
V4.5.4.5V4.10.10V3.3.5.3.5

(6 5 2)

The (6 5 2) triangle group, Coxeter group [6,5], orbifold (*652) contains these uniform tilings:

Uniform hexagonal/pentagonal tilings
Symmetry: [6,5], (*652) [6,5]+, (652)[6,5+], (5*3)[1+,6,5], (*553)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 256-1.png H2 tiling 256-3.png H2 tiling 256-2.png H2 tiling 256-6.png H2 tiling 256-4.png H2 tiling 256-5.png H2 tiling 256-7.png Uniform tiling 65-snub.png H2 tiling 355-1.png
{6,5} t{6,5} r{6,5} 2t{6,5}=t{5,6} 2r{6,5}={5,6} rr{6,5} tr{6,5} sr{6,5} s{5,6} h{6,5}
Uniform duals
CDel node f1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel node f1.pngCDel 6.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel 5.pngCDel node f1.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node f1.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node f1.pngCDel node f1.pngCDel 6.pngCDel node f1.pngCDel 5.pngCDel node f1.pngCDel node fh.pngCDel 6.pngCDel node fh.pngCDel 5.pngCDel node fh.pngCDel node.pngCDel 6.pngCDel node fh.pngCDel 5.pngCDel node fh.pngCDel node fh.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
H2chess 256b.png Order-6 pentakis pentagonal tiling.png Order-6-5 quasiregular rhombic tiling.png H2chess 256e.png H2 tiling 256-1.png Deltoidal pentahexagonal tiling.png H2checkers 256.png
V65V5.12.12V5.6.5.6V6.10.10V56V4.5.4.6V4.10.12V3.3.5.3.6V3.3.3.5.3.5V(3.5)5

(6 6 2)

The (6 6 2) triangle group, Coxeter group [6,6], orbifold (*662) contains these uniform tilings:

Uniform hexahexagonal tilings
Symmetry: [6,6], (*662)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png = CDel nodes 10ru.pngCDel split2-66.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node.png = CDel nodes 10ru.pngCDel split2-66.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node.png = CDel nodes.pngCDel split2-66.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-66.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-66.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node 1.png = CDel nodes 11.pngCDel split2-66.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node 1.png =CDel nodes 11.pngCDel split2-66.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 6.pngCDel node 1.png
H2 tiling 266-1.png H2 tiling 266-3.png H2 tiling 266-2.png H2 tiling 266-6.png H2 tiling 266-4.png H2 tiling 266-5.png H2 tiling 266-7.png
{6,6}
= h{4,6}
t{6,6}
= h2{4,6}
r{6,6}
{6,4}
t{6,6}
= h2{4,6}
{6,6}
= h{4,6}
rr{6,6}
r{6,4}
tr{6,6}
t{6,4}
Uniform duals
CDel node f1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel node f1.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node f1.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel node f1.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node f1.png
H2chess 266b.png H2chess 266f.png H2chess 266a.png H2chess 266e.png H2chess 266c.png H2chess 266d.png H2checkers 266.png
V66 V6.12.12 V6.6.6.6 V6.12.12 V66 V4.6.4.6V4.12.12
Alternations
[1+,6,6]
(*663)
[6+,6]
(6*3)
[6,1+,6]
(*3232)
[6,6+]
(6*3)
[6,6,1+]
(*663)
[(6,6,2+)]
(2*33)
[6,6]+
(662)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png = CDel branch 10ru.pngCDel split2-66.pngCDel node.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel 6.pngCDel node.png = CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h1.png = CDel node.pngCDel split1-66.pngCDel branch 01ld.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 66-h0.png Uniform tiling verf 34343434.png Uniform tiling 66-h0.png Uniform tiling 64-h1.png Uniform tiling 66-snub.png
h{6,6}s{6,6} hr{6,6} s{6,6}h{6,6}hrr{6,6} sr{6,6}

(8 6 2)

The (8 6 2) triangle group, Coxeter group [8,6], orbifold (*862) contains these uniform tilings.

Uniform octagonal/hexagonal tilings
Symmetry: [8,6], (*862)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node 1.png
H2 tiling 268-1.png H2 tiling 268-3.png H2 tiling 268-2.png H2 tiling 268-6.png H2 tiling 268-4.png H2 tiling 268-5.png H2 tiling 268-7.png
{8,6} t{8,6}
r{8,6} 2t{8,6}=t{6,8} 2r{8,6}={6,8} rr{8,6} tr{8,6}
Uniform duals
CDel node f1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node f1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node f1.png
H2chess 268b.png H2chess 268f.png H2chess 268a.png H2chess 268e.png H2chess 268c.png H2chess 268d.png H2checkers 268.png
V86V6.16.16V(6.8)2V8.12.12V68V4.6.4.8V4.12.16
Alternations
[1+,8,6]
(*466)
[8+,6]
(8*3)
[8,1+,6]
(*4232)
[8,6+]
(6*4)
[8,6,1+]
(*883)
[(8,6,2+)]
(2*43)
[8,6]+
(862)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h.pngCDel node h.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node h.png
H2 tiling 466-1.png H2 tiling 388-1.png Uniform tiling 86-snub.png
h{8,6}s{8,6}hr{8,6}s{6,8}h{6,8}hrr{8,6} sr{8,6}
Alternation duals
CDel node fh.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node fh.pngCDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node fh.png
H2chess 466b.png
V(4.6)6V3.3.8.3.8.3V(3.4.4.4)2V3.4.3.4.3.6V(3.8)8V3.45V3.3.6.3.8

(7 7 2)

The (7 7 2) triangle group, Coxeter group [7,7], orbifold (*772) contains these uniform tilings:

Uniform heptaheptagonal tilings
Symmetry: [7,7], (*772) [7,7]+, (772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png = CDel nodes 10ru.pngCDel split2-77.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png = CDel nodes 10ru.pngCDel split2-77.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png = CDel nodes.pngCDel split2-77.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-77.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-77.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node 1.png = CDel nodes 11.pngCDel split2-77.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node 1.png =CDel nodes 11.pngCDel split2-77.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 7.pngCDel node 1.png
CDel node h.pngCDel 7.pngCDel node h.pngCDel 7.pngCDel node h.png =CDel nodes hh.pngCDel split2-77.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 7.pngCDel node h.png
Uniform tiling 77-t0.png Uniform tiling 77-t01.png Uniform tiling 77-t1.png Uniform tiling 77-t12.png Uniform tiling 77-t2.png Uniform tiling 77-t02.png Uniform tiling 77-t012.png Uniform tiling 77-snub.png
{7,7} t{7,7}
r{7,7} 2t{7,7}=t{7,7} 2r{7,7}={7,7} rr{7,7} tr{7,7} sr{7,7}
Uniform duals
CDel node f1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.pngCDel node f1.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node.pngCDel node.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node.pngCDel node.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node f1.pngCDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node f1.pngCDel node f1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node f1.pngCDel node f1.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node f1.pngCDel node fh.pngCDel 7.pngCDel node fh.pngCDel 7.pngCDel node fh.png
Uniform tiling 77-t2.png Order7 heptakis heptagonal til.png Uniform tiling 74-t2.png Order7 heptakis heptagonal til.png Uniform tiling 77-t0.png Ord74 qreg rhombic til.png Hyperbolic domains 772.png
V77 V7.14.14 V7.7.7.7 V7.14.14 V77 V4.7.4.7V4.14.14V3.3.7.3.7

(8 8 2)

The (8 8 2) triangle group, Coxeter group [8,8], orbifold (*882) contains these uniform tilings:

Uniform octaoctagonal tilings
Symmetry: [8,8], (*882)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png = CDel nodes 10ru.pngCDel split2-88.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.png = CDel nodes 10ru.pngCDel split2-88.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.png = CDel nodes.pngCDel split2-88.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-88.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-88.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node 1.png = CDel nodes 11.pngCDel split2-88.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node 1.png = CDel nodes 11.pngCDel split2-88.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node 1.png
H2 tiling 288-1.png H2 tiling 288-3.png H2 tiling 288-2.png H2 tiling 288-6.png H2 tiling 288-4.png H2 tiling 288-5.png H2 tiling 288-7.png
{8,8} t{8,8}
r{8,8} 2t{8,8}=t{8,8} 2r{8,8}={8,8} rr{8,8} tr{8,8}
Uniform duals
CDel node f1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node f1.png
H2chess 288b.png H2chess 288f.png H2chess 288a.png H2chess 288e.png H2chess 288c.png H2chess 288d.png H2checkers 288.png
V88 V8.16.16 V8.8.8.8 V8.16.16 V88 V4.8.4.8V4.16.16
Alternations
[1+,8,8]
(*884)
[8+,8]
(8*4)
[8,1+,8]
(*4242)
[8,8+]
(8*4)
[8,8,1+]
(*884)
[(8,8,2+)]
(2*44)
[8,8]+
(882)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png = CDel label4.pngCDel branch 10ru.pngCDel split2-88.pngCDel node.pngCDel node h.pngCDel 8.pngCDel node h.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node h1.pngCDel 8.pngCDel node.png = CDel nodes 11.pngCDel 4a4b-cross.pngCDel nodes.pngCDel node.pngCDel 8.pngCDel node h.pngCDel 8.pngCDel node h.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node h1.png = CDel node.pngCDel split1-88.pngCDel branch 01ld.pngCDel node h.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node h.png = CDel nodes hh.pngCDel split2-88.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 8.pngCDel node.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 8.pngCDel node h.png = CDel nodes hh.pngCDel split2-88.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 8.pngCDel node h.png
Uniform tiling 88-h0.png Uniform tiling 444-t0.png Uniform tiling 88-h0.png Uniform tiling 443-t1.png Uniform tiling 88-snub.png
h{8,8}s{8,8} hr{8,8} s{8,8}h{8,8} hrr{8,8} sr{8,8}
Alternation duals
CDel node fh.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node fh.png
Uniform tiling 88-t1.png Uniform tiling 66-t1.png
V(4.8)8V3.4.3.8.3.8 V(4.4)4 V3.4.3.8.3.8V(4.8)8 V46 V3.3.8.3.8

General triangle domains

There are infinitely many general triangle group families (p q r). This article shows uniform tilings in 9 families: (4 3 3), (4 4 3), (4 4 4), (5 3 3), (5 4 3), (5 4 4), (6 3 3), (6 4 3), and (6 4 4).

(4 3 3)

The (4 3 3) triangle group, Coxeter group [(4,3,3)], orbifold (*433) contains these uniform tilings. Without right angles in the fundamental triangle, the Wythoff constructions are slightly different. For instance in the (4,3,3) triangle family, the snub form has six polygons around a vertex and its dual has hexagons rather than pentagons. In general the vertex figure of a snub tiling in a triangle (p,q,r) is p. 3.q.3.r.3, being 4.3.3.3.3.3 in this case below.

Uniform (4,3,3) tilings
Symmetry: [(4,3,3)], (*433) [(4,3,3)]+, (433)
CDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node.pngCDel label4.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel label4.pngCDel branch.pngCDel split2.pngCDel node 1.pngCDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.pngCDel label4.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel label4.pngCDel branch hh.pngCDel split2.pngCDel node h.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
H2 tiling 334-1.png H2 tiling 334-3.png H2 tiling 334-2.png H2 tiling 334-6.png H2 tiling 334-4.png H2 tiling 334-5.png H2 tiling 334-7.png Uniform tiling 433-snub2.png
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
Uniform duals
Uniform dual tiling 433-t0.png Uniform dual tiling 433-t01.png Uniform dual tiling 433-t0.png Uniform dual tiling 433-t12.png H2-8-3-dual.svg Uniform dual tiling 433-t12.png H2-8-3-kis-dual.svg Uniform dual tiling 433-snub.png
V(3.4)3V3.8.3.8V(3.4)3V3.6.4.6 V(3.3)4 V3.6.4.6V6.6.8V3.3.3.3.3.4

(4 4 3)

The (4 4 3) triangle group, Coxeter group [(4,4,3)], orbifold (*443) contains these uniform tilings.

Uniform (4,4,3) tilings
Symmetry: [(4,4,3)] (*443) [(4,4,3)]+
(443)
[(4,4,3+)]
(3*22)
[(4,1+,4,3)]
(*3232)
CDel branch 01rd.pngCDel split2-44.pngCDel node.pngCDel branch 01rd.pngCDel split2-44.pngCDel node 1.pngCDel branch.pngCDel split2-44.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-44.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.pngCDel branch 11.pngCDel split2-44.pngCDel node.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.pngCDel branch hh.pngCDel split2-44.pngCDel node h.pngCDel branch hh.pngCDel split2-44.pngCDel node.pngCDel branch.pngCDel split2-44.pngCDel node h.pngCDel branch 10ru.pngCDel split2-44.pngCDel node h.png
CDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 443-t0.png Uniform tiling 443-t01.png Uniform tiling 443-t1.png Uniform tiling 443-t12.png Uniform tiling 443-t2.png Uniform tiling 443-t02.png Uniform tiling 443-t012.png Uniform tiling 443-snub1.png Uniform tiling 64-h1.png Uniform tiling 66-t2.png Uniform tiling verf 34664.png
h{6,4}
t0(4,4,3)
h2{6,4}
t0,1(4,4,3)
{4,6}1/2
t1(4,4,3)
h2{6,4}
t1,2(4,4,3)
h{6,4}
t2(4,4,3)
r{6,4}1/2
t0,2(4,4,3)
t{4,6}1/2
t0,1,2(4,4,3)
s{4,6}1/2
s(4,4,3)
hr{4,6}1/2
hr(4,3,4)
h{4,6}1/2
h(4,3,4)
q{4,6}
h1(4,3,4)
Uniform duals
Uniform tiling 66-t1.png Ord64 qreg rhombic til.png Order4 hexakis hexagonal til.png Uniform tiling 66-t0.png
V(3.4)4V3.8.4.8 V(4.4)3 V3.8.4.8V(3.4)4V4.6.4.6V6.8.8V3.3.3.4.3.4V(4.4.3)2V66V4.3.4.6.6

(4 4 4)

The (4 4 4) triangle group, Coxeter group [(4,4,4)], orbifold (*444) contains these uniform tilings.

Uniform (4,4,4) tilings
Symmetry: [(4,4,4)], (*444) [(4,4,4)]+
(444)
[(1+,4,4,4)]
(*4242)
[(4+,4,4)]
(4*22)
CDel label4.pngCDel branch 01rd.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 01rd.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node h0.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node h1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node h1.pngCDel 4.pngCDel node.png
H2 tiling 444-1.png H2 tiling 444-3.png H2 tiling 444-2.png H2 tiling 444-6.png H2 tiling 444-4.png H2 tiling 444-5.png H2 tiling 444-7.png Uniform tiling 444-snub.png H2 tiling 288-4.png H2 tiling 344-2.png
t0(4,4,4)
h{8,4}
t0,1(4,4,4)
h2{8,4}
t1(4,4,4)
{4,8}1/2
t1,2(4,4,4)
h2{8,4}
t2(4,4,4)
h{8,4}
t0,2(4,4,4)
r{4,8}1/2
t0,1,2(4,4,4)
t{4,8}1/2
s(4,4,4)
s{4,8}1/2
h(4,4,4)
h{4,8}1/2
hr(4,4,4)
hr{4,8}1/2
Uniform duals
H2chess 444b.png H2chess 444f.png H2chess 444a.png H2chess 444e.png H2chess 444c.png H2chess 444d.png H2checkers 444.png Uniform dual tiling 433-t0.png H2 tiling 288-1.png H2 tiling 266-2.png
V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V8.8.8 V3.4.3.4.3.4 V88 V(4,4)3

(5 3 3)

The (5 3 3) triangle group, Coxeter group [(5,3,3)], orbifold (*533) contains these uniform tilings.

Uniform (5,3,3) tilings
Symmetry: [(5,3,3)], (*533)[(5,3,3)]+, (533)
CDel label5.pngCDel branch 01rd.pngCDel split2.pngCDel node.pngCDel label5.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel label5.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel label5.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel label5.pngCDel branch.pngCDel split2.pngCDel node 1.pngCDel label5.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.pngCDel label5.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel label5.pngCDel branch hh.pngCDel split2.pngCDel node h.png
CDel node h1.pngCDel 10.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 10.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 10.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 10.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 10.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 10.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 10.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 10.pngCDel node h.pngCDel 3.pngCDel node h.png
H2 tiling 335-1.png H2 tiling 335-3.png H2 tiling 335-2.png H2 tiling 335-6.png H2 tiling 335-4.png H2 tiling 335-5.png H2 tiling 335-7.png H2 snub 335a.png
h{10,3}
t0(5,3,3)
r{3,10}1/2
t0,1(5,3,3)
h{10,3}
t1(5,3,3)
h2{10,3}
t1,2(5,3,3)
{3,10}1/2
t2(5,3,3)
h2{10,3}
t0,2(5,3,3)
t{3,10}1/2
t0,1,2(5,3,3)
s{3,10}1/2
ht0,1,2(5,3,3)
Uniform duals
H2 tiling 555-7.png Hyperbolic domains 533.png
V(3.5)3V3.10.3.10V(3.5)3V3.6.5.6 V(3.3)5 V3.6.5.6V6.6.10V3.3.3.3.3.5

(5 4 3)

The (5 4 3) triangle group, Coxeter group [(5,4,3)], orbifold (*543) contains these uniform tilings.

(5,4,3) uniform tilings
Symmetry: [(5,4,3)], (*543)[(5,4,3)]+, (543)
CDel branch 01rd.pngCDel split2-45.pngCDel node.pngCDel branch 01rd.pngCDel split2-45.pngCDel node 1.pngCDel branch.pngCDel split2-45.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-45.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-45.pngCDel node.pngCDel branch 11.pngCDel split2-45.pngCDel node.pngCDel branch 11.pngCDel split2-45.pngCDel node 1.pngCDel branch hh.pngCDel split2-45.pngCDel node h.png
H2 tiling 345-1.png H2 tiling 345-3.png H2 tiling 345-2.png H2 tiling 345-6.png H2 tiling 345-4.png H2 tiling 345-5.png H2 tiling 345-7.png H2 snub 345a.png
t0(5,4,3)
(5,4,3)
t0,1(5,4,3)
r(3,5,4)
t1(5,4,3)
(4,3,5)
t1,2(5,4,3)
r(5,4,3)
t2(5,4,3)
(3,5,4)
t0,2(5,4,3)
r(4,3,5)
t0,1,2(5,4,3)
t(5,4,3)
s(5,4,3)
Uniform duals
H2checkers 345.png
V(3.5)4V3.10.4.10V(4.5)3V3.8.5.8V(3.4)5V4.6.5.6V6.8.10V3.5.3.4.3.3

(5 4 4)

The (5 4 4) triangle group, Coxeter group [(5,4,4)], orbifold (*544) contains these uniform tilings.

Uniform (5,4,4) tilings
Symmetry: [(5,4,4)]
(*544)
[(5,4,4)]+
(544)
[(5+,4,4)]
(5*22)
[(5,4,1+,4)]
(*5222)
CDel label5.pngCDel branch 01rd.pngCDel split2-44.pngCDel node.pngCDel label5.pngCDel branch 11.pngCDel split2-44.pngCDel node.pngCDel label5.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.pngCDel label5.pngCDel branch 10ru.pngCDel split2-44.pngCDel node 1.pngCDel label5.pngCDel branch.pngCDel split2-44.pngCDel node 1.pngCDel label5.pngCDel branch 01rd.pngCDel split2-44.pngCDel node 1.pngCDel label5.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.pngCDel label5.pngCDel branch hh.pngCDel split2-44.pngCDel node h.pngCDel label5.pngCDel branch.pngCDel split2-44.pngCDel node h.pngCDel label5.pngCDel branch hh.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 10.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 10.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 10.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 10.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 10.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h1.pngCDel 10.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 10.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 10.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 10.pngCDel node.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 10.pngCDel node h.pngCDel 4.pngCDel node.png
H2 tiling 445-1.png H2 tiling 445-3.png H2 tiling 445-2.png H2 tiling 445-6.png H2 tiling 445-4.png H2 tiling 445-5.png H2 tiling 445-7.png H2 snub 445a.png
t0(5,4,4)
h{10,4}
t0,1(5,4,4)
r{4,10}1/2
t1(5,4,4)
h{10,4}
t1,2(5,4,4)
h2{10,4}
t2(5,4,4)
{4,10}1/2
t0,2(5,4,4)
h2{10,4}
t0,1,2(5,4,4)
t{4,10}1/2
s(4,5,4)
s{4,10}1/2
h(4,5,4)
h{4,10}1/2
hr(4,5,4)
hr{4,10}1/2
Uniform duals
H2chess 445f.png H2chess 445c.png H2checkers 445.png
V(4.5)4V4.10.4.10V(4.5)4V4.8.5.8V(4.4)5V4.8.5.8V8.8.10V3.4.3.4.3.5V1010V(4.4.5)2

(6 3 3)

The (6 3 3) triangle group, Coxeter group [(6,3,3)], orbifold (*633) contains these uniform tilings.

Uniform (6,3,3) tilings
Symmetry: [(6,3,3)], (*633)[(6,3,3)]+, (633)
CDel label6.pngCDel branch 01rd.pngCDel split2.pngCDel node.pngCDel label6.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel label6.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel label6.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel label6.pngCDel branch.pngCDel split2.pngCDel node 1.pngCDel label6.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.pngCDel label6.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel label6.pngCDel branch hh.pngCDel split2.pngCDel node h.png
CDel node h1.pngCDel 12.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 12.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 12.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 12.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 12.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 12.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 12.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 12.pngCDel node h.pngCDel 3.pngCDel node h.png
H2 tiling 336-1.png H2 tiling 336-3.png H2 tiling 336-2.png H2 tiling 336-6.png H2 tiling 336-4.png H2 tiling 336-5.png H2 tiling 336-7.png H2 snub 336a.png
t0{(6,3,3)}
h{12,3}
t0,1{(6,3,3)}
r{3,12}1/2
t1{(6,3,3)}
h{12,3}
t1,2{(6,3,3)}
h2{12,3}
t2{(6,3,3)}
{3,12}1/2
t0,2{(6,3,3)}
h2{12,3}
t0,1,2{(6,3,3)}
t{3,12}1/2
s{(6,3,3)}
s{3,12}1/2
Uniform duals
H2 tiling 666-7.png H2checkers 336.png
V(3.6)3V3.12.3.12V(3.6)3V3.6.6.6 V(3.3)6
{12,3}
V3.6.6.6V6.6.12V3.3.3.3.3.6

(6 4 3)

The (6 4 3) triangle group, Coxeter group [(6,4,3)], orbifold (*643) contains these uniform tilings.

(6,4,3) uniform tilings
Symmetry: [(6,4,3)]
(*643)
[(6,4,3)]+
(643)
[(6,1+,4,3)]
(*3332)
[(6,4,3+)]
(3*32)
CDel branch 01rd.pngCDel split2-46.pngCDel node.pngCDel branch 01rd.pngCDel split2-46.pngCDel node 1.pngCDel branch.pngCDel split2-46.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-46.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-46.pngCDel node.pngCDel branch 11.pngCDel split2-46.pngCDel node.pngCDel branch 11.pngCDel split2-46.pngCDel node 1.pngCDel branch hh.pngCDel split2-46.pngCDel node h.pngCDel branch.pngCDel split2-46.pngCDel node h1.png = CDel branch.pngCDel 2a3b-cross.pngCDel branch 11.pngCDel branch hh.pngCDel split2-46.pngCDel node.png
H2 tiling 346-1.png H2 tiling 346-3.png H2 tiling 346-2.png H2 tiling 346-6.png H2 tiling 346-4.png H2 tiling 346-5.png H2 tiling 346-7.png H2 snub 346a.png
t0{(6,4,3)} t0,1{(6,4,3)} t1{(6,4,3)} t1,2{(6,4,3)} t2{(6,4,3)} t0,2{(6,4,3)} t0,1,2{(6,4,3)} s{(6,4,3)} h{(6,4,3)}hr{(6,4,3)}
Uniform duals
H2chess 346a.png H2chess 346d.png H2checkers 346.png
V(3.6)4V3.12.4.12V(4.6)3V3.8.6.8V(3.4)6V4.6.6.6V6.8.12V3.6.3.4.3.3V(3.6.6)3V4.(3.4)3

(6 4 4)

The (6 4 4) triangle group, Coxeter group [(6,4,4)], orbifold (*644) contains these uniform tilings.

6-4-4 uniform tilings
Symmetry: [(6,4,4)], (*644)(644)
CDel label6.pngCDel branch 01rd.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 12.pngCDel node.pngCDel 4.pngCDel node.png
CDel label6.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel 12.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel label6.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 12.pngCDel node.pngCDel 4.pngCDel node.png
CDel label6.pngCDel branch 10ru.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 12.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label6.pngCDel branch.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 12.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label6.pngCDel branch 01rd.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 12.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label6.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 12.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel label6.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node h0.pngCDel 12.pngCDel node h.pngCDel 4.pngCDel node h.png
H2 tiling 446-1.png H2 tiling 446-3.png H2 tiling 446-2.png H2 tiling 446-6.png H2 tiling 446-4.png H2 tiling 446-5.png H2 tiling 446-7.png H2 snub 446a.png
(6,4,4)
h{12,4}
t0,1(6,4,4)
r{4,12}1/2
t1(6,4,4)
h{12,4}
t1,2(6,4,4)
h2{12,4}
t2(6,4,4)
{4,12}1/2
t0,2(6,4,4)
h2{12,4}
t0,1,2(6,4,4)
t{4,12}1/2
s(6,4,4)
s{4,12}1/2
Uniform duals
H2chess 446b.png H2chess 446f.png H2chess 446a.png H2chess 446e.png H2chess 446c.png H2chess 446d.png H2checkers 446.png
V(4.6)4V(4.12)2V(4.6)4V4.8.6.8V412V4.8.6.8V8.8.12V4.6.4.6.6.6

Summary of tilings with finite triangular fundamental domains

For a table of all uniform hyperbolic tilings with fundamental domains (p q r), where 2 ≤ p,q,r ≤ 8.

See Template:Finite triangular hyperbolic tilings table

Quadrilateral domains

A quadrilateral domain has 9 generator point positions that define uniform tilings. Vertex figures are listed for general orbifold symmetry *pqrs, with 2-gonal faces degenerating into edges. Square kaleidoscope generators.png
A quadrilateral domain has 9 generator point positions that define uniform tilings. Vertex figures are listed for general orbifold symmetry *pqrs, with 2-gonal faces degenerating into edges.

(3 2 2 2)

Example uniform tilings of *3222 symmetry Example 3222 hyperbolic uniform tilings kaleidoscopes.png
Example uniform tilings of *3222 symmetry

Quadrilateral fundamental domains also exist in the hyperbolic plane, with the *3222 orbifold ([∞,3,∞] Coxeter notation) as the smallest family. There are 9 generation locations for uniform tiling within quadrilateral domains. The vertex figure can be extracted from a fundamental domain as 3 cases (1) Corner (2) Mid-edge, and (3) Center. When generating points are corners adjacent to order-2 corners, degenerate {2} digon faces at those corners exist but can be ignored. Snub and alternated uniform tilings can also be generated (not shown) if a vertex figure contains only even-sided faces.

Coxeter diagrams of quadrilateral domains are treated as a degenerate tetrahedron graph with 2 of 6 edges labeled as infinity, or as dotted lines. A logical requirement of at least one of two parallel mirrors being active limits the uniform cases to 9, and other ringed patterns are not valid.

Uniform tilings in symmetry *3222
CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes.png 64
Uniform tiling 64-t0.png
CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 01.png 6.6.4.4
Uniform tiling 6.6.4.4 (green).png
CDel branch 01.pngCDel 2a2b-cross.pngCDel nodes 01.png (3.4.4)2
Uniform tiling 3.4.4.3.4.4.png
CDel branch hh.pngCDel 2a2b-cross.pngCDel nodes 01.png 4.3.4.3.3.3
Uniform tiling 4.3.4.3.3.3.png
CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 10.png 6.6.4.4
Uniform tiling 6.6.4.4.png
CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png 6.4.4.4
Uniform tiling 4.4.4.6.png
CDel branch 10.pngCDel 2a2b-cross.pngCDel nodes 11.png 3.4.4.4.4
Uniform tiling 3.4.4.4.4 (green).png
CDel branch 10.pngCDel 2a2b-cross.pngCDel nodes 10.png (3.4.4)2
Uniform tiling 64-h1.png
CDel branch 01.pngCDel 2a2b-cross.pngCDel nodes 11.png 3.4.4.4.4
Uniform tiling 3.4.4.4.4.png
CDel branch.pngCDel 2a2b-cross.pngCDel nodes 11.png 46
Uniform tiling 64-t2.png

(3 2 3 2)

Similar H2 tilings in *3232 symmetry
Coxeter
diagrams
CDel node h0.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel labelh.pngCDel node.pngCDel split1-66.pngCDel nodes 10lu.pngCDel branch.pngCDel split2-44.pngCDel node h1.pngCDel node h1.pngCDel split1-66.pngCDel nodes.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.pngCDel labelh.pngCDel node h1.pngCDel split1-66.pngCDel nodes 10lu.pngCDel branch 10ru.pngCDel split2-44.pngCDel node h1.pngCDel labelh.pngCDel node.pngCDel split1-66.pngCDel nodes 11.pngCDel branch 11.pngCDel split2-44.pngCDel node.pngCDel labelh.png
CDel branch 11.pngCDel 2a2b-cross.pngCDel branch.pngCDel branch 10.pngCDel 2a2b-cross.pngCDel branch 10.pngCDel branch 10.pngCDel 2a2b-cross.pngCDel branch 11.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel branch 11.png
Vertex
figure
66 (3.4.3.4)2 3.4.6.6.4 6.4.6.4
Image Uniform tiling verf 666666.png Uniform tiling verf 34343434.png Uniform tiling verf 34664.png 3222-uniform tiling-verf4646.png
Dual Uniform tiling verf 666666b.png H2chess 246a.png

Ideal triangle domains

There are infinitely many triangle group families including infinite orders. This article shows uniform tilings in 9 families: (∞ 3 2), (∞ 4 2), (∞ ∞ 2), (∞ 3 3), (∞ 4 3), (∞ 4 4), (∞ ∞ 3), (∞ ∞ 4), and (∞ ∞ ∞).

(∞ 3 2)

The ideal (∞ 3 2) triangle group, Coxeter group [∞,3], orbifold (*∞32) contains these uniform tilings:

Paracompact uniform tilings in [,3] family
Symmetry: [,3], (*32) [,3]+
(32)
[1+,,3]
(*33)
[,3+]
(3*)
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node.png or CDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png or CDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
= CDel labelinfin.pngCDel branch hh.pngCDel split2.pngCDel node h.png
H2-I-3-dual.svg H2 tiling 23i-3.png H2 tiling 23i-2.png H2 tiling 23i-6.png H2 tiling 23i-4.png H2 tiling 23i-5.png H2 tiling 23i-7.png Uniform tiling i32-snub.png H2 tiling 33i-1.png H2 snub 33ia.png
{,3} t{,3} r{,3} t{3,} {3,} rr{,3} tr{,3} sr{,3} h{,3}h2{,3} s{3,}
Uniform duals
CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png
H2 tiling 23i-4.png Ord-infin triakis triang til.png Ord3infin qreg rhombic til.png H2checkers 33i.png H2-I-3-dual.svg Deltoidal triapeirogonal til.png H2checkers 23i.png Order-3-infinite floret pentagonal tiling.png Alternate order-3 apeirogonal tiling.png
V3 V3..V(3.)2V6.6. V3 V4.3.4.V4.6.V3.3.3.3.V(3.)3V3.3.3.3.3.

(∞ 4 2)

The ideal (∞ 4 2) triangle group, Coxeter group [∞,4], orbifold (*∞42) contains these uniform tilings:

Paracompact uniform tilings in [,4] family
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 24i-1.png H2 tiling 24i-3.png H2 tiling 24i-2.png H2 tiling 24i-6.png H2 tiling 24i-4.png H2 tiling 24i-5.png H2 tiling 24i-7.png
{,4} t{,4} r{,4} 2t{,4}=t{4,} 2r{,4}={4,} rr{,4} tr{,4}
Dual figures
CDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 24ib.png H2chess 24if.png H2chess 24ia.png H2chess 24ie.png H2chess 24ic.png H2chess 24id.png H2checkers 24i.png
V4V4..V(4.)2V8.8.V4V43.V4.8.
Alternations
[1+,,4]
(*44)
[+,4]
(*2)
[,1+,4]
(*22)
[,4+]
(4*)
[,4,1+]
(*2)
[(,4,2+)]
(2*2)
[,4]+
(42)
CDel node h1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png
= CDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.pngCDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.pngCDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h1.png
= CDel node.pngCDel split1-ii.pngCDel nodes 10lu.png
CDel node h.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png
h{,4} s{,4} hr{,4}s{4,}h{4,}hrr{,4} s{,4}
H2 tiling 44i-1.png Uniform tiling i42-h01.png H2 tiling 2ii-1.png Uniform tiling i42-snub.png
Alternation duals
CDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.pngCDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png
H2chess 44ib.png H2 tiling 2ii-4.png
V(.4)4V3.(3.)2V(4..4)2V3..(3.4)2VV.44V3.3.4.3.

(∞ 5 2)

The ideal (∞ 5 2) triangle group, Coxeter group [∞,5], orbifold (*∞52) contains these uniform tilings:

Paracompact uniform apeirogonal/pentagonal tilings
Symmetry: [,5], (*52)[,5]+
(52)
[1+,,5]
(*55)
[,5+]
(5*)
CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node.pngCDel infin.pngCDel node h.pngCDel 5.pngCDel node h.png
H2 tiling 25i-1.png H2 tiling 25i-3.png H2 tiling 25i-2.png H2 tiling 25i-6.png H2 tiling 25i-4.png H2 tiling 25i-5.png H2 tiling 25i-7.png Uniform tiling i52-snub.png H2 tiling 55i-1.png
{,5} t{,5} r{,5} 2t{,5}=t{5,} 2r{,5}={5,} rr{,5} tr{,5} sr{,5} h{,5}h2{,5}s{5,}
Uniform duals
CDel node f1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel node.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node fh.png
H2chess 25ib.png H2chess 25ie.png H2 tiling 25i-1.png H2checkers 25i.png
V5V5..V5..5.V.10.10V5V4.5.4.V4.10.V3.3.5.3.V(.5)5V3.5.3.5.3.

(∞ ∞ 2)

The ideal (∞  2) triangle group, Coxeter group [∞,∞], orbifold (*∞∞2) contains these uniform tilings:

Paracompact uniform tilings in [,] family
CDel node 1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
= CDel node 1.pngCDel split1-ii.pngCDel branch.pngCDel labelinfin.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel node 1.pngCDel split1-ii.pngCDel branch 11.pngCDel labelinfin.png
CDel node.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node.png
CDel node.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.png
CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
= CDel labelinfin.pngCDel branch.pngCDel split2-ii.pngCDel node 1.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel infin.pngCDel node 1.png
H2 tiling 2ii-1.png H2 tiling 2ii-3.png H2 tiling 2ii-2.png H2 tiling 2ii-6.png H2 tiling 2ii-4.png H2 tiling 2ii-5.png H2 tiling 2ii-7.png
{,} t{,} r{,} 2t{,}=t{,} 2r{,}={,} rr{,} tr{,}
Dual tilings
CDel node f1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node f1.png
H2chess 2iib.png H2chess 2iif.png H2chess 2iia.png H2chess 2iie.png H2chess 2iic.png H2chess 2iid.png H2checkers 2ii.png
VV..V(.)2V..VV4..4.V4.4.
Alternations
[1+,,]
(*2)
[+,]
(*)
[,1+,]
(*)
[,+]
(*)
[,,1+]
(*2)
[(,,2+)]
(2*)
[,]+
(2)
CDel node h.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node.pngCDel node.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node.pngCDel node.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node h.pngCDel node h.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node h.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node h.png
H2 tiling 2ii-1.png H2 tiling 33i-1.png H2 tiling 44i-1.png H2 tiling 33i-2.png H2 tiling 2ii-4.png Uniform tiling ii2-snub.png
h{,} s{,}hr{,}s{,} h2{,} hrr{,} sr{,}
Alternation duals
CDel node fh.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel node.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel node.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node fh.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node fh.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node fh.png
H2 tiling 2ii-4.png H2chess 44ib.png H2 tiling 2ii-1.png Infinitely-infinite-order floret pentagonal tiling.png
V(.)V(3.)3V(.4)4V(3.)3VV(4..4)2V3.3..3.

(∞ 3 3)

The ideal (∞ 3 3) triangle group, Coxeter group [(∞,3,3)], orbifold (*∞33) contains these uniform tilings.

Paracompact hyperbolic uniform tilings in [(,3,3)] family
Symmetry: [(,3,3)], (*33)[(,3,3)]+, (33)
CDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node.pngCDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel labelinfin.pngCDel branch.pngCDel split2.pngCDel node 1.pngCDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.pngCDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel labelinfin.pngCDel branch hh.pngCDel split2.pngCDel node h.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
H2 tiling 33i-1.png H2 tiling 33i-3.png H2 tiling 33i-2.png H2 tiling 33i-6.png H2 tiling 33i-4.png H2 tiling 33i-5.png H2 tiling 33i-7.png H2 snub 33ia.png
(,,3)t0,1(,3,3)t1(,3,3)t1,2(,3,3) t2(,3,3) t0,2(,3,3) t0,1,2(,3,3) s(,3,3)
Dual tilings
CDel 3.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel 3.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel 3.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel 3.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel 3.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.png
CDel node fh.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node h0.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node h0.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node h0.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Ord3infin qreg rhombic til.png H2checkers 33i.png
V(3.)3V3..3.V(3.)3V3.6..6V(3.3)V3.6..6V6.6.V3.3.3.3.3.

(∞ 4 3)

The ideal (∞ 4 3) triangle group, Coxeter group [(∞,4,3)], orbifold (*∞43) contains these uniform tilings:

Paracompact hyperbolic uniform tilings in [(,4,3)] family
Symmetry: [(,4,3)]
(*43)
[(,4,3)]+
(43)
[(,4,3+)]
(3*4)
[(,1+,4,3)]
(*323)
CDel branch 01rd.pngCDel split2-i4.pngCDel node.pngCDel branch 01rd.pngCDel split2-i4.pngCDel node 1.pngCDel branch.pngCDel split2-i4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-i4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-i4.pngCDel node.pngCDel branch 11.pngCDel split2-i4.pngCDel node.pngCDel branch 11.pngCDel split2-i4.pngCDel node 1.pngCDel branch hh.pngCDel split2-i4.pngCDel node h.pngCDel branch hh.pngCDel split2-i4.pngCDel node.pngCDel branch.pngCDel split2-i4.pngCDel node h1.png = CDel branch.pngCDel ia2b-cross.pngCDel branch 11.png
H2 tiling 34i-1.png H2 tiling 34i-3.png H2 tiling 34i-2.png H2 tiling 34i-6.png H2 tiling 34i-4.png H2 tiling 34i-5.png H2 tiling 34i-7.png H2 snub 44ia.png
(,4,3)t0,1(,4,3)t1(,4,3)t1,2(,4,3)t2(,4,3)t0,2(,4,3)t0,1,2(,4,3)s(,4,3)ht0,2(,4,3)ht1(,4,3)
Dual tilings
H2chess 34ia.png H2chess 34id.png H2checkers 34i.png
V(3.)4V3..4.V(4.)3V3.8..8V(3.4)4.6..6V6.8.V3.3.3.4.3.V(4.3.4)2.V(6..6)3

(∞ 4 4)

The ideal (∞ 4 4) triangle group, Coxeter group [(∞,4,4)], orbifold (*∞44) contains these uniform tilings.

Paracompact hyperbolic uniform tilings in [(4,4,)] family
Symmetry: [(4,4,)], (*44)(44)
CDel labelinfin.pngCDel branch 01rd.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel label6.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png
CDel labelinfin.pngCDel branch 10ru.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel labelinfin.pngCDel branch.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel labelinfin.pngCDel branch 01rd.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel labelinfin.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel labelinfin.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node h0.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png
H2 tiling 44i-1.png H2 tiling 44i-3.png H2 tiling 44i-2.png H2 tiling 44i-6.png H2 tiling 44i-4.png H2 tiling 44i-5.png H2 tiling 44i-7.png H2 snub 44ia.png
(4,4,)
h{,4}
t0,1(4,4,)
r{4,}1/2
t1(4,4,)
h{4,}1/2
t1,2(4,4,)
h2{,4}
t2(4,4,)
{4,}1/2
t0,2(4,4,)
h2{,4}
t0,1,2(4,4,)
t{4,}1/2
s(4,4,)
s{4,}1/2
Dual tilings
H2chess 44ib.png H2chess 44if.png H2chess 44ia.png H2chess 44ie.png H2chess 44ic.png H2chess 44id.png H2checkers 44i.png
V(4.)4V4..4.V(4.)4V4..4.V4V4..4.V8.8.V3.4.3.4.3.

(∞ ∞ 3)

The ideal (∞  3) triangle group, Coxeter group [(∞,∞,3)], orbifold (*∞∞3) contains these uniform tilings.

Paracompact hyperbolic uniform tilings in [(,,3)] family
Symmetry: [(,,3)], (*3)[(,,3)]+
(3)
[(,,3+)]
(3*)
[(,1+,,3)]
(*33)
CDel branch 01rd.pngCDel split2-ii.pngCDel node.pngCDel branch 01rd.pngCDel split2-ii.pngCDel node 1.pngCDel branch.pngCDel split2-ii.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-ii.pngCDel node 1.pngCDel branch 10ru.pngCDel split2-ii.pngCDel node.pngCDel branch 11.pngCDel split2-ii.pngCDel node.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.pngCDel branch hh.pngCDel split2-ii.pngCDel node h.pngCDel branch hh.pngCDel split2-ii.pngCDel node.pngCDel branch.pngCDel split2-ii.pngCDel node h.png = CDel branch.pngCDel iaib-cross.pngCDel branch 11.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node h1.png
H2 tiling 3ii-1.png H2 tiling 3ii-3.png H2 tiling 3ii-2.png H2 tiling 3ii-6.png H2 tiling 3ii-4.png H2 tiling 3ii-5.png H2 tiling 3ii-7.png H2 snub 66ia.png H2 tiling 66i-2.png
(,,3)
h{6,}
t0,1(,,3)
h2{6,}
t1(,,3)
{,6}1/2
t1,2(,,3)
h2{6,}
t2(,,3)
h{6,}
t0,2(,,3)
r{,6}1/2
t0,1,2(,,3)
t{,6}1/2
s(,,3)
s{,6}1/2
hr0,2(,,3)
hr{,6}1/2
hr1(,,3)
h{,6}1/2
Dual tilings
H2chess 3iia.png H2chess 3iid.png H2checkers 3ii.png H2chess 66ia.png
V(3.)V3...V(.)3V3...V(3.)V(6.)2V6..V3..3..3.3V(3.4..4)2V(.6)6

(∞ ∞ 4)

The ideal (∞  4) triangle group, Coxeter group [(∞,∞,4)], orbifold (*∞∞4) contains these uniform tilings.

Paracompact hyperbolic uniform tilings in [(,,4)] family
Symmetry: [(,,4)], (*4)
CDel label4.pngCDel branch 01rd.pngCDel split2-ii.pngCDel node.pngCDel label4.pngCDel branch 01rd.pngCDel split2-ii.pngCDel node 1.pngCDel label4.pngCDel branch.pngCDel split2-ii.pngCDel node 1.pngCDel label4.pngCDel branch 10ru.pngCDel split2-ii.pngCDel node 1.pngCDel label4.pngCDel branch 10ru.pngCDel split2-ii.pngCDel node.pngCDel label4.pngCDel branch 11.pngCDel split2-ii.pngCDel node.pngCDel label4.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel infin.pngCDel node.pngCDel node h1.pngCDel 8.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node h0.pngCDel 8.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node h1.pngCDel 8.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node h1.pngCDel 8.pngCDel node.pngCDel infin.pngCDel node.pngCDel node h0.pngCDel 8.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel node h0.pngCDel 8.pngCDel node 1.pngCDel infin.pngCDel node 1.png
H2 tiling 4ii-1.png H2 tiling 4ii-3.png H2 tiling 4ii-2.png H2 tiling 4ii-6.png H2 tiling 4ii-4.png H2 tiling 4ii-5.png H2 tiling 4ii-7.png
(,,4)
h{8,}
t0,1(,,4)
h2{8,}
t1(,,4)
{,8}
t1,2(,,4)
h2{,8}
t2(,,4)
h{8,}
t0,2(,,4)
r{,8}
t0,1,2(,,4)
t{,8}
Dual tilings
H2chess 4iib.png H2chess 4iif.png H2chess 4iia.png H2chess 4iie.png H2chess 4iic.png H2chess 4iid.png H2checkers 4ii.png
V(4.)V...4V4V...4V(4.)V...4V..8
Alternations
[(1+,,,4)]
(*2)
[(+,,4)]
(*2)
[(,1+,,4)]
(*2)
[(,+,4)]
(*2)
[(,,1+,4)]
(*2)
[(,,4+)]
(2*)
[(,,4)]+
(4)
CDel 3.pngCDel node h.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel 3.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 4.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 4.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel 3.pngCDel node h.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel 3.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel 4.png
CDel label4.pngCDel branch 0hr.pngCDel split2-ii.pngCDel node.pngCDel label4.pngCDel branch 0hr.pngCDel split2-ii.pngCDel node h.pngCDel label4.pngCDel branch.pngCDel split2-ii.pngCDel node h.pngCDel label4.pngCDel branch h0r.pngCDel split2-ii.pngCDel node h.pngCDel label4.pngCDel branch h0r.pngCDel split2-ii.pngCDel node.pngCDel label4.pngCDel branch hh.pngCDel split2-ii.pngCDel node.pngCDel label4.pngCDel branch hh.pngCDel split2-ii.pngCDel node h.png
H2 tiling 2ii-1.png H2 tiling 44i-1.png H2 tiling 2ii-4.png H2 snub 44ia.png
Alternation duals
H2 tiling 2ii-4.png H2chess 44ib.png H2 tiling 2ii-1.png
VV.44V(.4)4V.44VV.44V3..3..3.4

(∞ ∞ ∞)

The ideal (∞  ∞) triangle group, Coxeter group [(∞,∞,∞)], orbifold (*∞∞∞) contains these uniform tilings.

Paracompact uniform tilings in [(,,)] family
CDel labelinfin.pngCDel branch 01rd.pngCDel split2-ii.pngCDel node.pngCDel labelinfin.pngCDel branch 01rd.pngCDel split2-ii.pngCDel node 1.pngCDel labelinfin.pngCDel branch.pngCDel split2-ii.pngCDel node 1.pngCDel labelinfin.pngCDel branch 10ru.pngCDel split2-ii.pngCDel node 1.pngCDel labelinfin.pngCDel branch 10ru.pngCDel split2-ii.pngCDel node.pngCDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node.pngCDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node h0.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel node h1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel node h0.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel node h0.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.png
H2 tiling iii-1.png H2 tiling iii-3.png H2 tiling iii-2.png H2 tiling iii-6.png H2 tiling iii-4.png H2 tiling iii-5.png H2 tiling iii-7.png
(,,)
h{,}
r(,,)
h2{,}
(,,)
h{,}
r(,,)
h2{,}
(,,)
h{,}
r(,,)
r{,}
t(,,)
t{,}
Dual tilings
H2chess iiia.png H2chess iiif.png H2chess iiib.png H2chess iiid.png H2chess iiic.png H2chess iiie.png Infinite-order triangular tiling.svg
VV...VV...VV...V..
Alternations
[(1+,,,)]
(*)
[+,,)]
(*)
[,1+,,)]
(*)
[,+,)]
(*)
[(,,,1+)]
(*)
[(,,+)]
(*)
[,,)]+
()
CDel labelinfin.pngCDel branch 0hr.pngCDel split2-ii.pngCDel node.pngCDel labelinfin.pngCDel branch 0hr.pngCDel split2-ii.pngCDel node h.pngCDel labelinfin.pngCDel branch.pngCDel split2-ii.pngCDel node h1.pngCDel labelinfin.pngCDel branch h0r.pngCDel split2-ii.pngCDel node h.pngCDel labelinfin.pngCDel branch h0r.pngCDel split2-ii.pngCDel node.pngCDel labelinfin.pngCDel branch hh.pngCDel split2-ii.pngCDel node.pngCDel labelinfin.pngCDel branch hh.pngCDel split2-ii.pngCDel node h.png
H2 tiling 2ii-1.png H2 tiling 44i-1.png H2 tiling 2ii-1.png H2 tiling 44i-1.png H2 tiling 2ii-1.png H2 tiling 44i-1.png Uniform tiling iii-snub.png
Alternation duals
H2 tiling 2ii-4.png H2chess 44ib.png H2 tiling 2ii-4.png H2chess 44ib.png H2 tiling 2ii-4.png H2chess 44ib.png
V(.)V(.4)4V(.)V(.4)4V(.)V(.4)4V3..3..3.

Summary of tilings with infinite triangular fundamental domains

For a table of all uniform hyperbolic tilings with fundamental domains (p q r), where 2 p,q,r ≤ 8, and one or more as ∞.

Infinite triangular hyperbolic tilings
(p q r)t0h0t01h01t1h1t12h12t2h2t02h02t012s
H2checkers 23i.png
( 3 2)
t0{,3}
H2-I-3-dual.svg
3
h0{,3}
(3.)3
t01{,3}
H2 tiling 23i-3.png
.3.
t1{,3}
H2 tiling 23i-2.png
(3.)2
t12{,3}
H2 tiling 23i-6.png
6..6
h12{,3}
3.3.3..3.3
t2{,3}
H2 tiling 23i-4.png
3
t02{,3}
H2 tiling 23i-5.png
3.4..4
t012{,3}
H2 tiling 23i-7.png
4.6.
s{,3}
3.3.3.3.
H2checkers 24i.png
( 4 2)
t0{,4}
H2 tiling 24i-1.png
4
h0{,4}
(4.)4
t01{,4}
H2 tiling 24i-3.png
.4.
h01{,4}
3..3.3.
t1{,4}
H2 tiling 24i-2.png
(4.)2
h1{,4}
(4.4.)2
t12{,4}
H2 tiling 24i-6.png
8..8
h12{,4}
3.4.3..3.4
t2{,4}
H2 tiling 24i-4.png
4
h2{,4}
t02{,4}
H2 tiling 24i-5.png
4.4..4
h02{,4}
4.4.4..4
t012{,4}
H2 tiling 24i-7.png
4.8.
s{,4}
3.3.4.3.
H2checkers 25i.png
( 5 2)
t0{,5}
H2 tiling 25i-1.png
5
h0{,5}
(5.)5
t01{,5}
H2 tiling 25i-3.png
.5.
t1{,5}
H2 tiling 25i-2.png
(5.)2
t12{,5}
H2 tiling 25i-6.png
10..10
h12{,5}
3.5.3..3.5
t2{,5}
H2 tiling 25i-4.png
5
t02{,5}
H2 tiling 25i-5.png
5.4..4
t012{,5}
H2 tiling 25i-7.png
4.10.
s{,5}
3.3.5.3.
H2checkers 26i.png
( 6 2)
t0{,6}
H2 tiling 26i-1.png
6
h0{,6}
(6.)6
t01{,6}
H2 tiling 26i-3.png
.6.
h01{,6}
3..3.3.3.
t1{,6}
H2 tiling 26i-2.png
(6.)2
h1{,6}
(4.3.4.)2
t12{,6}
H2 tiling 26i-6.png
12..12
h12{,6}
3.6.3..3.6
t2{,6}
H2 tiling 26i-4.png
6
h2{,6}
(.3)
t02{,6}
H2 tiling 26i-5.png
6.4..4
h02{,6}
4.3.4.4..4
t012{,6}
H2 tiling 26i-7.png
4.12.
s{,6}
3.3.6.3.
H2checkers 27i.png
( 7 2)
t0{,7}
H2 tiling 27i-1.png
7
h0{,7}
(7.)7
t01{,7}
H2 tiling 27i-3.png
.7.
t1{,7}
H2 tiling 27i-2.png
(7.)2
t12{,7}
H2 tiling 27i-6.png
14..14
h12{,7}
3.7.3..3.7
t2{,7}
H2 tiling 27i-4.png
7
t02{,7}
H2 tiling 27i-5.png
7.4..4
t012{,7}
H2 tiling 27i-7.png
4.14.
s{,7}
3.3.7.3.
H2checkers 28i.png
( 8 2)
t0{,8}
H2 tiling 28i-1.png
8
h0{,8}
(8.)8
t01{,8}
H2 tiling 28i-3.png
.8.
h01{,8}
3..3.4.3.
t1{,8}
H2 tiling 28i-2.png
(8.)2
h1{,8}
(4.4.4.)2
t12{,8}
H2 tiling 28i-6.png
16..16
h12{,8}
3.8.3..3.8
t2{,8}
H2 tiling 28i-4.png
8
h2{,8}
(.4)
t02{,8}
H2 tiling 28i-5.png
8.4..4
h02{,8}
4.4.4.4..4
t012{,8}
H2 tiling 28i-7.png
4.16.
s{,8}
3.3.8.3.
H2checkers 2ii.png
( 2)
t0{,}
H2 tiling 2ii-1.png
h0{,}
(.)
t01{,}
H2 tiling 2ii-3.png
..
h01{,}
3..3..3.
t1{,}
H2 tiling 2ii-2.png
4
h1{,}
(4.)4
t12{,}
H2 tiling 2ii-6.png
..
h12{,}
3..3..3.
t2{,}
H2 tiling 2ii-4.png
h2{,}
(.)
t02{,}
H2 tiling 2ii-5.png
(.4)2
h02{,}
(4..4)2
t012{,}
H2 tiling 2ii-7.png
4..
s{,}
3.3..3.
H2checkers 33i.png
( 3 3)
t0(,3,3)
H2 tiling 33i-1.png
(.3)3
t01(,3,3)
H2 tiling 33i-3.png
(3.)2
t1(,3,3)
H2 tiling 33i-2.png
(3.)3
t12(,3,3)
H2 tiling 33i-6.png
3.6..6
t2(,3,3)
H2 tiling 33i-4.png
3
t02(,3,3)
H2 tiling 33i-5.png
3.6..6
t012(,3,3)
H2 tiling 33i-7.png
6.6.
s(,3,3)
3.3.3.3.3.
H2checkers 34i.png
( 4 3)
t0(,4,3)
H2 tiling 34i-1.png
(.3)4
t01(,4,3)
H2 tiling 34i-3.png
3..4.
t1(,4,3)
H2 tiling 34i-2.png
(4.)3
h1(,4,3)
(6.6.)3
t12(,4,3)
H2 tiling 34i-6.png
3.8..8
t2(,4,3)
H2 tiling 34i-4.png
(4.3)
t02(,4,3)
H2 tiling 34i-5.png
4.6..6
h02(,4,3)
4.4.3.4..4.3
t012(,4,3)
H2 tiling 34i-7.png
6.8.
s(,4,3)
3.3.3.4.3.
H2checkers 35i.png
( 5 3)
t0(,5,3)
H2 tiling 35i-1.png
(.3)5
t01(,5,3)
H2 tiling 35i-3.png
3..5.
t1(,5,3)
H2 tiling 35i-2.png
(5.)3
t12(,5,3)
H2 tiling 35i-6.png
3.10..10
t2(,5,3)
H2 tiling 35i-4.png
(5.3)
t02(,5,3)
H2 tiling 35i-5.png
5.6..6
t012(,5,3)
H2 tiling 35i-7.png
6.10.
s(,5,3)
3.3.3.5.3.
H2checkers 36i.png
( 6 3)
t0(,6,3)
H2 tiling 36i-1.png
(.3)6
t01(,6,3)
H2 tiling 36i-3.png
3..6.
t1(,6,3)
H2 tiling 36i-2.png
(6.)3
h1(,6,3)
(6.3.6.)3
t12(,6,3)
H2 tiling 36i-6.png
3.12..12
t2(,6,3)
H2 tiling 36i-4.png
(6.3)
t02(,6,3)
H2 tiling 36i-5.png
6.6..6
h02(,6,3)
4.3.4.3.4..4.3
t012(,6,3)
H2 tiling 36i-7.png
6.12.
s(,6,3)
3.3.3.6.3.
H2checkers 37i.png
( 7 3)
t0(,7,3)
H2 tiling 37i-1.png
(.3)7
t01(,7,3)
H2 tiling 37i-3.png
3..7.
t1(,7,3)
H2 tiling 37i-2.png
(7.)3
t12(,7,3)
H2 tiling 37i-6.png
3.14..14
t2(,7,3)
H2 tiling 37i-4.png
(7.3)
t02(,7,3)
H2 tiling 37i-5.png
7.6..6
t012(,7,3)
H2 tiling 37i-7.png
6.14.
s(,7,3)
3.3.3.7.3.
H2checkers 38i.png
( 8 3)
t0(,8,3)
H2 tiling 38i-1.png
(.3)8
t01(,8,3)
H2 tiling 38i-3.png
3..8.
t1(,8,3)
H2 tiling 38i-2.png
(8.)3
h1(,8,3)
(6.4.6.)3
t12(,8,3)
H2 tiling 38i-6.png
3.16..16
t2(,8,3)
H2 tiling 38i-4.png
(8.3)
t02(,8,3)
H2 tiling 38i-5.png
8.6..6
h02(,8,3)
4.4.4.3.4..4.3
t012(,8,3)
H2 tiling 38i-7.png
6.16.
s(,8,3)
3.3.3.8.3.
H2checkers 3ii.png
( 3)
t0(,,3)
H2 tiling 3ii-1.png
(.3)
t01(,,3)
H2 tiling 3ii-3.png
3...
t1(,,3)
H2 tiling 3ii-2.png
6
h1(,,3)
(6.)6
t12(,,3)
H2 tiling 3ii-6.png
3...
t2(,,3)
H2 tiling 3ii-4.png
(.3)
t02(,,3)
H2 tiling 3ii-5.png
(.6)2
h02(,,3)
(4..4.3)2
t012(,,3)
H2 tiling 3ii-7.png
6..
s(,,3)
3.3.3..3.
H2checkers 44i.png
( 4 4)
t0(,4,4)
H2 tiling 44i-1.png
(.4)4
h0(,4,4)
(8..8)4
t01(,4,4)
H2 tiling 44i-3.png
(4.)2
h01(,4,4)
(4.4.)2
t1(,4,4)
H2 tiling 44i-2.png
(4.)4
h1(,4,4)
(8.8.)4
t12(,4,4)
H2 tiling 44i-6.png
4.8..8
h12(,4,4)
4.4.4.4..4.4
t2(,4,4)
H2 tiling 44i-4.png
4
h2(,4,4)
t02(,4,4)
H2 tiling 44i-5.png
4.8..8
h02(,4,4)
4.4.4.4..4.4
t012(,4,4)
H2 tiling 44i-7.png
8.8.
s(,4,4)
3.4.3.4.3.
H2checkers 45i.png
( 5 4)
t0(,5,4)
H2 tiling 45i-1.png
(.4)5
h0(,5,4)
(10..10)5
t01(,5,4)
H2 tiling 45i-3.png
4..5.
t1(,5,4)
H2 tiling 45i-2.png
(5.)4
t12(,5,4)
H2 tiling 45i-6.png
4.10..10
h12(,5,4)
4.4.5.4..4.5
t2(,5,4)
H2 tiling 45i-4.png
(5.4)
t02(,5,4)
H2 tiling 45i-5.png
5.8..8
t012(,5,4)
H2 tiling 45i-7.png
8.10.
s(,5,4)
3.4.3.5.3.
H2checkers 46i.png
( 6 4)
t0(,6,4)
H2 tiling 46i-1.png
(.4)6
h0(,6,4)
(12..12)6
t01(,6,4)
H2 tiling 46i-3.png
4..6.
h01(,6,4)
4.4..4.3.4.
t1(,6,4)
H2 tiling 46i-2.png
(6.)4
h1(,6,4)
(8.3.8.)4
t12(,6,4)
H2 tiling 46i-6.png
4.12..12
h12(,6,4)
4.4.6.4..4.6
t2(,6,4)
H2 tiling 46i-4.png
(6.4)
h2(,6,4)
(.3.)
t02(,6,4)
H2 tiling 46i-5.png
6.8..8
h02(,6,4)
4.3.4.4.4..4.4
t012(,6,4)
H2 tiling 46i-7.png
8.12.
s(,6,4)
3.4.3.6.3.
H2checkers 47i.png
( 7 4)
t0(,7,4)
H2 tiling 47i-1.png
(.4)7
h0(,7,4)
(14..14)7
t01(,7,4)
H2 tiling 47i-3.png
4..7.
t1(,7,4)
H2 tiling 47i-2.png
(7.)4
t12(,7,4)
H2 tiling 47i-6.png
4.14..14
h12(,7,4)
4.4.7.4..4.7
t2(,7,4)
H2 tiling 47i-4.png
(7.4)
t02(,7,4)
H2 tiling 47i-5.png
7.8..8
t012(,7,4)
H2 tiling 47i-7.png
8.14.
s(,7,4)
3.4.3.7.3.
H2checkers 48i.png
( 8 4)
t0(,8,4)
H2 tiling 48i-1.png
(.4)8
h0(,8,4)
(16..16)8
t01(,8,4)
H2 tiling 48i-3.png
4..8.
h01(,8,4)
4.4..4.4.4.
t1(,8,4)
H2 tiling 48i-2.png
(8.)4
h1(,8,4)
(8.4.8.)4
t12(,8,4)
H2 tiling 48i-6.png
4.16..16
h12(,8,4)
4.4.8.4..4.8
t2(,8,4)
H2 tiling 48i-4.png
(8.4)
h2(,8,4)
(.4.)
t02(,8,4)
H2 tiling 48i-5.png
8.8..8
h02(,8,4)
4.4.4.4.4..4.4
t012(,8,4)
H2 tiling 48i-7.png
8.16.
s(,8,4)
3.4.3.8.3.
H2checkers 4ii.png
( 4)
t0(,,4)
H2 tiling 4ii-1.png
(.4)
h0(,,4)
(..)
t01(,,4)
H2 tiling 4ii-3.png
4...
h01(,,4)
4.4..4..4.
t1(,,4)
H2 tiling 4ii-2.png
8
h1(,,4)
(8.)8
t12(,,4)
H2 tiling 4ii-6.png
4...
h12(,,4)
4.4..4..4.
t2(,,4)
H2 tiling 4ii-4.png
(.4)
h2(,,4)
(..)
t02(,,4)
H2 tiling 4ii-5.png
(.8)2
h02(,,4)
(4..4.4)2
t012(,,4)
H2 tiling 4ii-7.png
8..
s(,,4)
3.4.3..3.
H2checkers 55i.png
( 5 5)
t0(,5,5)
H2 tiling 55i-1.png
(.5)5
t01(,5,5)
H2 tiling 55i-3.png
(5.)2
t1(,5,5)
H2 tiling 55i-2.png
(5.)5
t12(,5,5)
H2 tiling 55i-6.png
5.10..10
t2(,5,5)
H2 tiling 55i-4.png
5
t02(,5,5)
H2 tiling 55i-5.png
5.10..10
t012(,5,5)
H2 tiling 55i-7.png
10.10.
s(,5,5)
3.5.3.5.3.
H2checkers 56i.png
( 6 5)
t0(,6,5)
H2 tiling 56i-1.png
(.5)6
t01(,6,5)
H2 tiling 56i-3.png
5..6.
t1(,6,5)
H2 tiling 56i-2.png
(6.)5
h1(,6,5)
(10.3.10.)5
t12(,6,5)
H2 tiling 56i-6.png
5.12..12
t2(,6,5)
H2 tiling 56i-4.png
(6.5)
t02(,6,5)
H2 tiling 56i-5.png
6.10..10
h02(,6,5)
4.3.4.5.4..4.5
t012(,6,5)
H2 tiling 56i-7.png
10.12.
s(,6,5)
3.5.3.6.3.
H2checkers 57i.png
( 7 5)
t0(,7,5)
H2 tiling 57i-1.png
(.5)7
t01(,7,5)
H2 tiling 57i-3.png
5..7.
t1(,7,5)
H2 tiling 57i-2.png
(7.)5
t12(,7,5)
H2 tiling 57i-6.png
5.14..14
t2(,7,5)
H2 tiling 57i-4.png
(7.5)
t02(,7,5)
H2 tiling 57i-5.png
7.10..10
t012(,7,5)
H2 tiling 57i-7.png
10.14.
s(,7,5)
3.5.3.7.3.
H2checkers 58i.png
( 8 5)
t0(,8,5)
H2 tiling 58i-1.png
(.5)8
t01(,8,5)
H2 tiling 58i-3.png
5..8.
t1(,8,5)
H2 tiling 58i-2.png
(8.)5
h1(,8,5)
(10.4.10.)5
t12(,8,5)
H2 tiling 58i-6.png
5.16..16
t2(,8,5)
H2 tiling 58i-4.png
(8.5)
t02(,8,5)
H2 tiling 58i-5.png
8.10..10
h02(,8,5)
4.4.4.5.4..4.5
t012(,8,5)
H2 tiling 58i-7.png
10.16.
s(,8,5)
3.5.3.8.3.
H2checkers 5ii.png
( 5)
t0(,,5)
H2 tiling 5ii-1.png
(.5)
t01(,,5)
H2 tiling 5ii-3.png
5...
t1(,,5)
H2 tiling 5ii-2.png
10
h1(,,5)
(10.)10
t12(,,5)
H2 tiling 5ii-6.png
5...
t2(,,5)
H2 tiling 5ii-4.png
(.5)
t02(,,5)
H2 tiling 5ii-5.png
(.10)2
h02(,,5)
(4..4.5)2
t012(,,5)
H2 tiling 5ii-7.png
10..
s(,,5)
3.5.3..3.
H2checkers 66i.png
( 6 6)
t0(,6,6)
H2 tiling 66i-1.png
(.6)6
h0(,6,6)
(12..12.3)6
t01(,6,6)
H2 tiling 66i-3.png
(6.)2
h01(,6,6)
(4.3.4.)2
t1(,6,6)
H2 tiling 66i-2.png
(6.)6
h1(,6,6)
(12.3.12.)6
t12(,6,6)
H2 tiling 66i-6.png
6.12..12
h12(,6,6)
4.3.4.6.4..4.6
t2(,6,6)
H2 tiling 66i-4.png
6
h2(,6,6)
(.3)
t02(,6,6)
H2 tiling 66i-5.png
6.12..12
h02(,6,6)
4.3.4.6.4..4.6
t012(,6,6)
H2 tiling 66i-7.png
12.12.
s(,6,6)
3.6.3.6.3.
H2checkers 67i.png
( 7 6)
t0(,7,6)
H2 tiling 67i-1.png
(.6)7
h0(,7,6)
(14..14.3)7
t01(,7,6)
H2 tiling 67i-3.png
6..7.
t1(,7,6)
H2 tiling 67i-2.png
(7.)6
t12(,7,6)
H2 tiling 67i-6.png
6.14..14
h12(,7,6)
4.3.4.7.4..4.7
t2(,7,6)
H2 tiling 67i-4.png
(7.6)
t02(,7,6)
H2 tiling 67i-5.png
7.12..12
t012(,7,6)
H2 tiling 67i-7.png
12.14.
s(,7,6)
3.6.3.7.3.
H2checkers 68i.png
( 8 6)
t0(,8,6)
H2 tiling 68i-1.png
(.6)8
h0(,8,6)
(16..16.3)8
t01(,8,6)
H2 tiling 68i-3.png
6..8.
h01(,8,6)
4.3.4..4.4.4.
t1(,8,6)
H2 tiling 68i-2.png
(8.)6
h1(,8,6)
(12.4.12.)6
t12(,8,6)
H2 tiling 68i-6.png
6.16..16
h12(,8,6)
4.3.4.8.4..4.8
t2(,8,6)
H2 tiling 68i-4.png
(8.6)
h2(,8,6)
(.4..3)
t02(,8,6)
H2 tiling 68i-5.png
8.12..12
h02(,8,6)
4.4.4.6.4..4.6
t012(,8,6)
H2 tiling 68i-7.png
12.16.
s(,8,6)
3.6.3.8.3.
H2checkers 6ii.png
( 6)
t0(,,6)
H2 tiling 6ii-1.png
(.6)
h0(,,6)
(...3)
t01(,,6)
H2 tiling 6ii-3.png
6...
h01(,,6)
4.3.4..4..4.
t1(,,6)
H2 tiling 6ii-2.png
12
h1(,,6)
(12.)12
t12(,,6)
H2 tiling 6ii-6.png
6...
h12(,,6)
4.3.4..4..4.
t2(,,6)
H2 tiling 6ii-4.png
(.6)
h2(,,6)
(...3)
t02(,,6)
H2 tiling 6ii-5.png
(.12)2
h02(,,6)
(4..4.6)2
t012(,,6)
H2 tiling 6ii-7.png
12..
s(,,6)
3.6.3..3.
H2checkers 77i.png
( 7 7)
t0(,7,7)
H2 tiling 77i-1.png
(.7)7
t01(,7,7)
H2 tiling 77i-3.png
(7.)2
t1(,7,7)
H2 tiling 77i-2.png
(7.)7
t12(,7,7)
H2 tiling 77i-6.png
7.14..14
t2(,7,7)
H2 tiling 77i-4.png
7
t02(,7,7)
H2 tiling 77i-5.png
7.14..14
t012(,7,7)
H2 tiling 77i-7.png
14.14.
s(,7,7)
3.7.3.7.3.
H2checkers 78i.png
( 8 7)
t0(,8,7)
H2 tiling 78i-1.png
(.7)8
t01(,8,7)
H2 tiling 78i-3.png
7..8.
t1(,8,7)
H2 tiling 78i-2.png
(8.)7
h1(,8,7)
(14.4.14.)7
t12(,8,7)
H2 tiling 78i-6.png
7.16..16
t2(,8,7)
H2 tiling 78i-4.png
(8.7)
t02(,8,7)
H2 tiling 78i-5.png
8.14..14
h02(,8,7)
4.4.4.7.4..4.7
t012(,8,7)
H2 tiling 78i-7.png
14.16.
s(,8,7)
3.7.3.8.3.
H2checkers 7ii.png
( 7)
t0(,,7)
H2 tiling 7ii-1.png
(.7)
t01(,,7)
H2 tiling 7ii-3.png
7...
t1(,,7)
H2 tiling 7ii-2.png
14
h1(,,7)
(14.)14
t12(,,7)
H2 tiling 7ii-6.png
7...
t2(,,7)
H2 tiling 7ii-4.png
(.7)
t02(,,7)
H2 tiling 7ii-5.png
(.14)2
h02(,,7)
(4..4.7)2
t012(,,7)
H2 tiling 7ii-7.png
14..
s(,,7)
3.7.3..3.
H2checkers 88i.png
( 8 8)
t0(,8,8)
H2 tiling 88i-1.png
(.8)8
h0(,8,8)
(16..16.4)8
t01(,8,8)
H2 tiling 88i-3.png
(8.)2
h01(,8,8)
(4.4.4.)2
t1(,8,8)
H2 tiling 88i-2.png
(8.)8
h1(,8,8)
(16.4.16.)8
t12(,8,8)
H2 tiling 88i-6.png
8.16..16
h12(,8,8)
4.4.4.8.4..4.8
t2(,8,8)
H2 tiling 88i-4.png
8
h2(,8,8)
(.4)
t02(,8,8)
H2 tiling 88i-5.png
8.16..16
h02(,8,8)
4.4.4.8.4..4.8
t012(,8,8)
H2 tiling 88i-7.png
16.16.
s(,8,8)
3.8.3.8.3.
H2checkers 8ii.png
( 8)
t0(,,8)
H2 tiling 8ii-1.png
(.8)
h0(,,8)
(...4)
t01(,,8)
H2 tiling 8ii-3.png
8...
h01(,,8)
4.4.4..4..4.
t1(,,8)
H2 tiling 8ii-2.png
16
h1(,,8)
(16.)16
t12(,,8)
H2 tiling 8ii-6.png
8...
h12(,,8)
4.4.4..4..4.
t2(,,8)
H2 tiling 8ii-4.png
(.8)
h2(,,8)
(...4)
t02(,,8)
H2 tiling 8ii-5.png
(.16)2
h02(,,8)
(4..4.8)2
t012(,,8)
H2 tiling 8ii-7.png
16..
s(,,8)
3.8.3..3.
Infinite-order triangular tiling.svg
()
t0(,,)
H2 tiling iii-1.png
h0(,,)
(.)
t01(,,)
H2 tiling iii-3.png
(.)2
h01(,,)
(4..4.)2
t1(,,)
H2 tiling iii-2.png
h1(,,)
(.)
t12(,,)
H2 tiling iii-6.png
(.)2
h12(,,)
(4..4.)2
t2(,,)
H2 tiling iii-4.png
h2(,,)
(.)
t02(,,)
H2 tiling iii-5.png
(.)2
h02(,,)
(4..4.)2
t012(,,)
H2 tiling iii-7.png
3
s(,,)
(3.)3

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Rhombitrihexagonal tiling</span> Semiregular tiling of the Euclidean plane

In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.

<span class="mw-page-title-main">Coxeter–Dynkin diagram</span> Pictorial representation of symmetry

In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction: each graph "node" represents a mirror and the label attached to a branch encodes the dihedral angle order between two mirrors, that is, the amount by which the angle between the reflective planes can be multiplied to get 180 degrees. An unlabeled branch implicitly represents order-3, and each pair of nodes that is not connected by a branch at all represents a pair of mirrors at order-2.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

In geometry, a skew apeirohedron is an infinite skew polyhedron consisting of nonplanar faces or nonplanar vertex figures, allowing the figure to extend indefinitely without folding round to form a closed surface.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

<span class="mw-page-title-main">Uniform honeycombs in hyperbolic space</span> Tiling of hyperbolic 3-space by uniform polyhedra

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

<span class="mw-page-title-main">Infinite-order square tiling</span>

In geometry, the infinite-order square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.

<span class="mw-page-title-main">Order-4 apeirogonal tiling</span> Regular tiling in geometry

In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.

<span class="mw-page-title-main">Hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere, a surface in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Order-4 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Order-6 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Triangular tiling honeycomb</span>

The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.

<span class="mw-page-title-main">Order-4 square tiling honeycomb</span>

In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {4,4,4}, it has four square tilings around each edge, and infinite square tilings around each vertex in a square tiling vertex figure.

In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle,, defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles. Uniform solutions are constructed by a single generator point with 7 positions within the fundamental triangle, the 3 corners, along the 3 edges, and the triangle interior. All vertices exist at the generator, or a reflected copy of it. Edges exist between a generator point and its image across a mirror. Up to 3 face types exist centered on the fundamental triangle corners. Right triangle domains can have as few as 1 face type, making regular forms, while general triangles have at least 2 triangle types, leading at best to a quasiregular tiling.

References