In geometry, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons . A polyhedron whose vertices are equidistant from its center can be conveniently studied by projecting its edges onto the sphere to obtain a corresponding spherical polyhedron.
The most familiar spherical polyhedron is the soccer ball, thought of as a spherical truncated icosahedron. The next most popular spherical polyhedron is the beach ball, thought of as a hosohedron.
Some "improper" polyhedra, such as hosohedra and their duals, dihedra, exist as spherical polyhedra, but their flat-faced analogs are degenerate. The example hexagonal beach ball, {2, 6}, is a hosohedron, and {6, 2} is its dual dihedron.
During the 10th Century, the Islamic scholar Abū al-Wafā' Būzjānī (Abu'l Wafa) studied spherical polyhedra as part of a work on the geometry needed by craftspeople and architects. [1]
The work of Buckminster Fuller on geodesic domes in the mid 20th century triggered a boom in the study of spherical polyhedra. [2] At roughly the same time, Coxeter used them to enumerate all but one of the uniform polyhedra, through the construction of kaleidoscopes (Wythoff construction). [3]
All regular polyhedra, semiregular polyhedra, and their duals can be projected onto the sphere as tilings:
Schläfli symbol | {p,q} | t{p,q} | r{p,q} | t{q,p} | {q,p} | rr{p,q} | tr{p,q} | sr{p,q} |
---|---|---|---|---|---|---|---|---|
Vertex config. | pq | q.2p.2p | p.q.p.q | p.2q.2q | qp | q.4.p.4 | 4.2q.2p | 3.3.q.3.p |
Tetrahedral symmetry (3 3 2) | 33 | 3.6.6 | 3.3.3.3 | 3.6.6 | 33 | 3.4.3.4 | 4.6.6 | 3.3.3.3.3 |
V3.6.6 | V3.3.3.3 | V3.6.6 | V3.4.3.4 | V4.6.6 | V3.3.3.3.3 | |||
Octahedral symmetry (4 3 2) | 43 | 3.8.8 | 3.4.3.4 | 4.6.6 | 34 | 3.4.4.4 | 4.6.8 | 3.3.3.3.4 |
V3.8.8 | V3.4.3.4 | V4.6.6 | V3.4.4.4 | V4.6.8 | V3.3.3.3.4 | |||
Icosahedral symmetry (5 3 2) | 53 | 3.10.10 | 3.5.3.5 | 5.6.6 | 35 | 3.4.5.4 | 4.6.10 | 3.3.3.3.5 |
V3.10.10 | V3.5.3.5 | V5.6.6 | V3.4.5.4 | V4.6.10 | V3.3.3.3.5 | |||
Dihedral example (p=6) (2 2 6) | 62 | 2.12.12 | 2.6.2.6 | 6.4.4 | 26 | 2.4.6.4 | 4.4.12 | 3.3.3.6 |
n | 2 | 3 | 4 | 5 | 6 | 7 | ... |
---|---|---|---|---|---|---|---|
n-Prism (2 2 p) | ... | ||||||
n-Bipyramid (2 2 p) | ... | ||||||
n-Antiprism | ... | ||||||
n-Trapezohedron | ... |
Spherical tilings allow cases that polyhedra do not, namely hosohedra: figures as {2,n}, and dihedra: figures as {n,2}. Generally, regular hosohedra and regular dihedra are used.
Space | Spherical | Euclidean | |||||
---|---|---|---|---|---|---|---|
Tiling name | Henagonal hosohedron | Digonal hosohedron | Trigonal hosohedron | Square hosohedron | Pentagonal hosohedron | ... | Apeirogonal hosohedron |
Tiling image | ... | ||||||
Schläfli symbol | {2,1} | {2,2} | {2,3} | {2,4} | {2,5} | ... | {2,∞} |
Coxeter diagram | ... | ||||||
Faces and edges | 1 | 2 | 3 | 4 | 5 | ... | ∞ |
Vertices | 2 | 2 | 2 | 2 | 2 | ... | 2 |
Vertex config. | 2 | 2.2 | 23 | 24 | 25 | ... | 2∞ |
Space | Spherical | Euclidean | |||||
---|---|---|---|---|---|---|---|
Tiling name | Monogonal dihedron | Digonal dihedron | Trigonal dihedron | Square dihedron | Pentagonal dihedron | ... | Apeirogonal dihedron |
Tiling image | ... | ||||||
Schläfli symbol | {1,2} | {2,2} | {3,2} | {4,2} | {5,2} | ... | {∞,2} |
Coxeter diagram | ... | ||||||
Faces | 2 {1} | 2 {2} | 2 {3} | 2 {4} | 2 {5} | ... | 2 {∞} |
Edges and vertices | 1 | 2 | 3 | 4 | 5 | ... | ∞ |
Vertex config. | 1.1 | 2.2 | 3.3 | 4.4 | 5.5 | ... | ∞.∞ |
Spherical polyhedra having at least one inversive symmetry are related to projective polyhedra [4] (tessellations of the real projective plane) – just as the sphere has a 2-to-1 covering map of the projective plane, projective polyhedra correspond under 2-fold cover to spherical polyhedra that are symmetric under reflection through the origin.
The best-known examples of projective polyhedra are the regular projective polyhedra, the quotients of the centrally symmetric Platonic solids, as well as two infinite classes of even dihedra and hosohedra: [5]
In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.
In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such, it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.
In geometry, an octahedron is a polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. Many types of irregular octahedra also exist, including both convex and non-convex shapes.
In geometry, a polyhedron is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:
In geometry, the truncated icosahedron is a polyhedron that can be constructed by truncating all of the regular icosahedron's vertices. Intuitively, it may be regarded as footballs that are typically patterned with white hexagons and black pentagons. It can be found in the application of geodesic dome structures such as those whose architecture Buckminster Fuller pioneered are often based on this structure. It is an example of an Archimedean solid, as well as a Goldberg polyhedron.
In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from the Latin stella, "star". Stellation is the reciprocal or dual process to faceting.
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.
In spherical geometry, an n-gonalhosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices.
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.
In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.
In geometry, a bigon, digon, or a 2-gon, is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space. It may also be viewed as a representation of a graph with two vertices, see "Generalized polygon".
In geometry, a monogon, also known as a henagon, is a polygon with one edge and one vertex. It has Schläfli symbol {1}.
A dihedron is a type of polyhedron, made of two polygon faces which share the same set of n edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat faces can be thought of as a lens, an example of which is the fundamental domain of a lens space L(p,q). Dihedra have also been called bihedra, flat polyhedra, or doubly covered polygons.
In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.
In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube and snub dodecahedron.
In geometry, a (globally) projective polyhedron is a tessellation of the real projective plane. These are projective analogs of spherical polyhedra – tessellations of the sphere – and toroidal polyhedra – tessellations of the toroids.
A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry, such that they have 6 triangles at a vertex, except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra, of which all but the smallest one have mostly hexagonal faces.
Buckminster Fuller's invention of the geodesic dome was the biggest stimulus for spherical subdivision research and development.