This article needs additional citations for verification .(April 2010) |
A geodesic dome is a hemispherical thin-shell structure (lattice-shell) based on a geodesic polyhedron. The rigid triangular elements of the dome distribute stress throughout the structure, making geodesic domes able to withstand very heavy loads for their size.
The first geodesic dome was designed after World War I by Walther Bauersfeld, [1] chief engineer of Carl Zeiss Jena, an optical company, for a planetarium to house his planetarium projector. An initial, small dome was patented and constructed by the firm of Dykerhoff and Wydmann on the roof of the Carl Zeiss Werke in Jena, Germany. A larger dome, called "The Wonder of Jena", opened to the public in July 1926. [2]
Twenty years later, Buckminster Fuller coined the term "geodesic" from field experiments with artist Kenneth Snelson at Black Mountain College in 1948 and 1949. Although Fuller was not the original inventor, he is credited with the U.S. popularization of the idea for which he received U.S. patent 2682235A on 29 June 1954. [3] The oldest surviving dome built by Fuller himself is located in Woods Hole, Massachusetts, and was built by students under his tutelage over three weeks in 1953. [4]
The geodesic dome appealed to Fuller because it was extremely strong for its weight, its "omnitriangulated" surface provided an inherently stable structure, and because a sphere encloses the greatest volume for the least surface area.
The dome was successfully adopted for specialized uses, such as the 21 Distant Early Warning Line domes built in Canada in 1956, [5] the 1958 Union Tank Car Company dome near Baton Rouge, Louisiana, designed by Thomas C. Howard of Synergetics, Inc. and specialty buildings such as the Kaiser Aluminum domes (constructed in numerous locations across the US, e.g., Virginia Beach, Virginia), auditoriums, weather observatories, and storage facilities. The dome was soon breaking records for covered surface, enclosed volume, and construction speed.
Beginning in 1954, the U.S. Marines experimented with helicopter-deliverable geodesic domes. A 30-foot wood and plastic geodesic dome was lifted and carried by helicopter at 50 knots without damage, leading to the manufacture of a standard magnesium dome by Magnesium Products of Milwaukee. Tests included assembly practices in which previously untrained Marines were able to assemble a 30-foot magnesium dome in 135 minutes, helicopter lifts off aircraft carriers, and a durability test in which an anchored dome successfully withstood without damage, a day-long 120 mph (190 km/h) propeller blast from the twin 3,000 horsepower engines of an anchored airplane. [6]
The 1958 Gold Dome in Oklahoma City, Oklahoma, utilized Fuller's design for use as a bank building. Another early example was the Stepan Center at the University of Notre Dame, built in 1962. [7]
The dome was introduced to a wider audience as a pavilion for the 1964 New York World's Fair designed by Thomas C. Howard of Synergetics, Inc. This dome is now used as an aviary by the Queens Zoo in Flushing Meadows Corona Park. [8]
Another dome is from Expo 67 at the Montreal World's Fair, where it was part of the American Pavilion. The structure's covering later burned, but the structure itself still stands and, under the name Biosphère, currently houses an interpretive museum about the Saint Lawrence River.
In the 1970s, Zomeworks licensed plans for structures based on other geometric solids, such as the Johnson solids, Archimedean solids, and Catalan solids. [9] These structures may have some faces that are not triangular, being squares or other polygons.
In 1975, a dome was constructed at the South Pole, where its resistance to snow and wind loads was important.
On October 1, 1982, one of the most famous geodesic domes, Spaceship Earth at Epcot in Walt Disney World Resort in Bay Lake, Florida, just outside of Orlando opened. The building and the ride inside of it are named with one of Buckminster Fuller's famous terms, Spaceship Earth, a world view expressing concern over the use of limited resources available on Earth and encouraging everyone on it to act as a harmonious crew working toward the greater good. The building is Epcot's icon, representing the entire park.
For the 1986 World's Fair (Expo 86), held in Vancouver, a Buckminster Fuller-inspired Geodesic dome was designed by the Expo's chief architect Bruno Freschi to serve as the fair's Expo Centre. Construction began in 1984 and was completed by early 1985. The dome and the building now serve as an Arts, Science and Technology center, and has been named Science World. [10]
In 2000, the world's first fully sustainable geodesic dome hotel, EcoCamp Patagonia, was built at Kawésqar National Park in Chilean Patagonia, [11] opening the following year in 2001. The hotel's dome design is key to resisting the region's strong winds and is based on the dwellings of the indigenous Kaweskar people. Geodomes are also becoming popular as a glamping (glamorous camping) unit.
Wooden domes have a hole drilled in the width of a strut. A stainless steel band locks the strut's hole to a steel pipe. With this method, the struts may be cut to the exact length needed. Triangles of exterior plywood are then nailed to the struts. The dome is wrapped from the bottom to the top with several stapled layers of tar paper, to shed water, and finished with shingles. This type of dome is often called a hub-and-strut dome because of the use of steel hubs to tie the struts together.
Paneled domes are constructed of separately framed timbers covered in plywood. The three members comprising the triangular frame are often cut at compound angles to provide for a flat fitting of the various triangles. Holes are drilled through the members at precise locations and steel bolts then connect the triangles to form the dome. These members are often 2x4s or 2x6s, which allow for more insulation to fit within the triangle. The panelized technique allows the builder to attach the plywood skin to the triangles while safely working on the ground or in a comfortable shop out of the weather. This method does not require expensive steel hubs.
Steel framework can be easily constructed of electrical conduit. One flattens the end of a strut and drills bolt holes at the needed length. A single bolt secures a vertex of struts. The nuts are usually set with removable locking compound, or if the dome is portable, have a castellated nut with a cotter pin. This is the standard way to construct domes for jungle gyms.
Domes can also be constructed with a lightweight aluminium framework which can either be bolted or welded together or can be connected with a more flexible nodal point/hub connection. These domes are usually clad with glass which is held in place with a PVC coping, which can be sealed with silicone to make it watertight. Some designs allow for double glazing or for insulated panels to be fixed in the framework.
Concrete and foam-plastic domes generally start with a steel framework dome, wrapped with chicken wire and wire screen for reinforcement. The chicken wire and screen are tied to the framework with wire ties. A coat of material is then sprayed or molded onto the frame. Tests should be performed with small squares to achieve the correct consistency of concrete or plastic. Generally, several coats are necessary on the inside and outside. The last step is to saturate concrete or polyester domes with a thin layer of epoxy compound to shed water.
Some concrete domes have been constructed from prefabricated, prestressed, steel-reinforced concrete panels that can be bolted into place. The bolts are within raised receptacles covered with little concrete caps to shed water. The triangles overlap to shed water. The triangles in this method can be molded in forms patterned in sand with wooden patterns, but the concrete triangles are usually so heavy that they must be placed with a crane. This construction is well-suited to domes because no place allows water to pool on the concrete and leak through. The metal fasteners, joints, and internal steel frames remain dry, preventing frost and corrosion damage. The concrete resists sun and weathering. Some form of internal flashing or caulking must be placed over the joints to prevent drafts. The 1963 Cinerama Dome was built from precast concrete hexagons and pentagons.
Domes can now be printed at high speeds using very large, mobile "3D Printers", also known as additive manufacturing machines. The material used as the filament is often a form of air injected concrete or closed-cell plastic foam.
Given the complicated geometry of the geodesic dome, dome builders rely on tables of strut lengths, or "chord factors". In Geodesic Math and How to Use It, Hugh Kenner wrote, "Tables of chord factors, containing as they do the essential design information for spherical systems, were for many years guarded like military secrets. As late as 1966, some 3ν icosa figures from Popular Science Monthly were all anyone outside the circle of Fuller licensees had to go on." (page 57, 1976 edition). Other tables became available with publication of Lloyd Kahn's Domebook 1 (1970) and Domebook 2 (1971).
Fuller hoped that the geodesic dome would help address the postwar housing crisis. This was consistent with his prior hopes for both versions of the Dymaxion House.
Residential geodesic domes have been less successful than those used for working and/or entertainment, largely because of their complexity and consequent greater construction costs. Professional experienced dome contractors, while hard to find, do exist, and can eliminate much of the cost overruns associated with false starts and incorrect estimates. Fuller himself lived in a geodesic dome in Carbondale, Illinois, at the corner of Forest Ave and Cherry St. [12] Fuller thought of residential domes as air-deliverable products manufactured by an aerospace-like industry. Fuller's own dome home still exists, the R. Buckminster Fuller and Anne Hewlett Dome Home, and a group called RBF Dome NFP is attempting to restore the dome and have it registered as a National Historic Landmark. It is on the National Register of Historic Places.
In 1986, a patent for a dome construction technique involving polystyrene triangles laminated to reinforced concrete on the outside, and wallboard on the inside was awarded to American Ingenuity of Rockledge, Florida. The construction technique allows the domes to be prefabricated in kit form and erected by a homeowner. This method makes the seams into the strongest part of the structure, where the seams and especially the hubs in most wooden-framed domes are the weakest point in the structure. It also has the advantage of being watertight.
Other examples have been built in Europe. In 2012, an aluminium and glass dome was used as a dome cover to an eco home in Norway [13] and in 2013 a glass and wood clad dome home was built in Austria. [14]
In Chile, examples of geodesic domes are being readily adopted for hotel accommodations either as tented style geodesic domes or glass-covered domes. Examples: EcoCamp Patagonia, Chile; [15] and Elqui Domos, Chile. [16]
Although dome homes enjoyed a ripple of popularity in the late 1960s and early 1970s, as a housing system, the dome has many disadvantages and problems. A former proponent of dome homes, Lloyd Kahn, who wrote two books about them (Domebook 1 and Domebook 2) and founded Shelter Publications, became disillusioned with them, calling them "smart but not wise". He noted the following disadvantages, which he has listed on his company's website: Off-the-shelf building materials (e.g., plywood, strand board) normally come in rectangular shapes, therefore some material may have to be scrapped after cutting rectangles down to triangles, increasing the cost of construction. Fire escapes are problematic; codes require them for larger structures, and they are expensive. Windows conforming to code can cost anywhere from five to fifteen times as much as windows in conventional houses. Professional electrical wiring costs more because of increased labor time. Even owner-wired situations are costly, because more of certain materials are required for dome construction. Expansion and partitioning is also difficult. Kahn notes that domes are difficult if not impossible to build with natural materials, generally requiring plastics, etc., which are polluting and deteriorate in sunlight.
Air stratification and moisture distribution within a dome are unusual. The conditions tend to quickly degrade wooden framing or interior paneling.
Privacy is difficult to guarantee because a dome is difficult to partition satisfactorily. Sounds, smells, and even reflected light tend to be conveyed through the entire structure.
As with any curved shape, the dome produces wall areas that can be difficult to use and leaves some peripheral floor area with restricted use due to lack of headroom. Circular plan shapes lack the simple modularity provided by rectangles. Furnishers and fitters design with flat surfaces in mind. Placing a standard sofa against an exterior wall (for example) results in a crescent behind the sofa being wasted.
Dome builders using cut-board sheathing material (common in the 1960s and 1970s) find it hard to seal domes against rain, because of their many seams. Also, these seams may be stressed because ordinary solar heat flexes the entire structure each day as the sun moves across the sky. Subsequent addition of straps and interior flexible drywall finishes has virtually eliminated this movement being noticed in the interior finishes.
The most effective waterproofing method with a wooden dome is to shingle the dome. Peaked caps at the top of the dome, or to modify the dome shapes are used where slope is insufficient for ice barrier. One-piece reinforced concrete or plastic domes are also in use, and some domes have been constructed from plastic or waxed cardboard triangles that are overlapped in such a way as to shed water.
Buckminster Fuller's former student J. Baldwin insisted that no reason exists for a properly designed, well-constructed dome to leak, and that some designs 'cannot' leak. [17]
The building of very strong, stable structures out of patterns of reinforcing triangles is most commonly seen in tent design. It has been applied in the abstract in other industrial design, but even in management science and deliberative structures as a conceptual metaphor, especially in the work of Stafford Beer, whose "transmigration" method is based so specifically on dome design that only fixed numbers of people can take part in the process at each deliberation stage.
According to Guinness World Records, as of May 30, 2021, [18] the Jeddah Super Dome, Jeddah, Saudi Arabia ( 21°44′59″N39°09′06″E / 21.7496403°N 39.1516230°E ), 210 m (690 ft) is the current largest geodesic dome.
According to the Buckminster Fuller Institute in 2010, [19] the world's 10 largest geodesic domes by diameter at that time were:
The Fuller Institute list is now dated. Several important domes missed or built later are now in the top 10. Currently, many geodesic domes are larger than 113 metres (371 ft) in diameter. [22]
Richard Buckminster Fuller was an American architect, systems theorist, writer, designer, inventor, philosopher, and futurist. He styled his name as R. Buckminster Fuller in his writings, publishing more than 30 books and coining or popularizing such terms as "Spaceship Earth", "Dymaxion", "ephemeralization", "synergetics", and "tensegrity".
In geometry, the truncated icosahedron is a polyhedron that can be constructed by truncating all of the regular icosahedron's vertices. Intuitively, it may be regarded as footballs that are typically patterned with white hexagons and black pentagons. It can be found in the application of geodesic dome structures such as those whose architecture Buckminster Fuller pioneered are often based on this structure. It is an example of an Archimedean solid, as well as a Goldberg polyhedron.
Tensegrity, tensional integrity or floating compression is a structural principle based on a system of isolated components under compression inside a network of continuous tension, and arranged in such a way that the compressed members do not touch each other while the prestressed tensioned members delineate the system spatially.
The Dymaxion House was developed by inventor and architect Buckminster Fuller to address several perceived shortcomings with existing homebuilding techniques. Fuller designed several versions of the house at different times—all of them factory manufactured kits, assembled on site, intended to be suitable for any site or environment and to use resources efficiently. A key design consideration was ease of shipment and assembly.
In architecture and structural engineering, a space frame or space structure is a rigid, lightweight, truss-like structure constructed from interlocking struts in a geometric pattern. Space frames can be used to span large areas with few interior supports. Like the truss, a space frame is strong because of the inherent rigidity of the triangle; flexing loads are transmitted as tension and compression loads along the length of each strut.
James Tennant Baldwin, often known as Jay Baldwin or J. Baldwin, was an American industrial designer and writer. Baldwin was a student of Buckminster Fuller; Baldwin's work was inspired by Fuller's principles and, in the case of some of Baldwin's published writings, he popularized and interpreted Fuller's ideas and achievements. In his own right, Baldwin was a figure in American designers' efforts to incorporate solar, wind, and other renewable energy sources. In his career, being a fabricator was as important as being a designer. Baldwin was noted as the inventor of the "Pillow Dome", a design that combines Buckminster Fuller's geodesic dome with panels of inflated ETFE plastic panels.
The Climatron is a greenhouse enclosed in a geodesic dome that is part of the Missouri Botanical Garden in St. Louis. Initiated by then Garden director Frits W. Went, the dome is the world's first completely air-conditioned greenhouse and the first geodesic dome to be enclosed in rigid Plexiglass (Perspex) panels. Completed in 1960, it was designed by T. C. Howard, of Synergetics, Inc., Raleigh, North Carolina. The broad climatic range within the dome, which recreates a lowland rain forest, is achieved by sophisticated climate controls without using interior partitions.
The Biosphere, also known as the Montreal Biosphere, is a museum dedicated to the environment in Montreal, Quebec, Canada. It is housed in the former United States pavilion constructed for Expo 67 located within the grounds of Parc Jean-Drapeau on Saint Helen's Island. The museum's geodesic dome was designed by Buckminster Fuller.
A diagrid is a framework of diagonally intersecting metal, concrete, or wooden beams that is used in the construction of buildings and roofs. It requires less structural steel than a conventional steel frame. Hearst Tower in New York City, designed by Norman Foster, uses 21 percent less steel than a standard design. The diagrid obviates the need for columns and can be used to make large column-free expanses of roofing. Another iconic building designed by Foster, 30 St Mary Axe, in London, UK, known as "The Gherkin", also uses the diagrid system.
Walther Bauersfeld was a German engineer.
The Geoscope was a proposal by Buckminster Fuller around 1960 to create a 200-foot-diameter (61 m) globe that would be covered in colored lights so that it could function as a large spherical display. It was envisioned that the Geoscope would be connected to computers which would allow it to display both historical and current data, and enable people to visualize large scale patterns around the world. Several projects by his students to build a "miniature Earth", starting with a 20-foot version at Cornell University in 1952, were precursors of the Geoscope proposal. Before proposing the Geoscope, Fuller had invented the Dymaxion map, a novel map projection for the whole Earth.
The construction of State Farm Center, originally known as the Assembly Hall, at the University of Illinois at Urbana–Champaign consisted of building a huge indoor arena with a 400-foot-diameter (120 m) concrete dome whose center height is 125 feet (38 m) above the center floor, and which weighs 10 million pounds. The building is considered an engineering marvel because of the unique method used to build the concrete roof. State Farm Center, the first-ever concrete dome arena, hosts the campus's teams in men's and women's basketball, numerous concerts and other events. It holds sentimental value for numerous alumni and fans alike and attracts attention for its design and construction. The construction of the Assembly Hall was conceived to provide UIUC with needed space for ceremonies and athletic events. The university’s population had outgrown the largest building on campus at that time, the Auditorium, and desired one building that could hold the entire university class. The design of the new building, by Max Abramovitz, called for the construction of one of the world’s largest edge-supported structure. The assembly hall was completed in 1963, and was dedicated on Honors Day, Friday May 3.
The ASM International Headquarters and Geodesic Dome, at the Materials Park campus in Russell Township, Geauga County, Ohio, United States, are the headquarters of ASM International, a professional organization for materials scientists and engineers. These modernist structures were built in 1958 and dedicated in September 1959.
The R. Buckminster Fuller and Anne Hewlett Dome Home, located at 407 S. Forest Ave. in Carbondale, Illinois, is a geodesic dome house which was the residence of Buckminster Fuller from 1960 to 1971. The house, inhabited by Fuller while he taught at Southern Illinois University, was the only geodesic dome Fuller lived in, as well as the only property he ever owned. Fuller, a prolific architect and engineer, popularized the geodesic dome as a building design, and his house was one of the first geodesic dome residences to be constructed. The home was built and designed by Al Miller of the Pease Woodworking Company. While living in the home, Fuller was awarded nine patents, published eleven books, and designed the Montreal Biosphère, one of his most famous works.
The Calico Dome, also known as Calico-shop Dome, was a geodesic dome on Relief Road, Ahmedabad, Gujarat, India. Designed by Gira Sarabhai and Gautam Sarabhai, with an inspiration from Buckminster Fuller's works, it was a combined showroom and shop for Calico Mills. It was inaugurated in 1963 and fell into disrepair when mills was closed in 1990s. It later collapsed. As of 2019, it is being reconstructed by the Ahmedabad Municipal Corporation as an industrial heritage site.
A Triodetic dome is a type of geodesic dome whose space frame is constructed using Triodetic connectors, invented in 1955 by the Canadian Arthur E. Fentiman.
Domes built in the 19th, 20th, and 21st centuries benefited from more efficient techniques for producing iron and steel as well as advances in structural analysis.
A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry, such that they have 6 triangles at a vertex, except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra, of which all but the smallest one have mostly hexagonal faces.
The Goldberg–Coxeter construction or Goldberg–Coxeter operation is a graph operation defined on regular polyhedral graphs with degree 3 or 4. It also applies to the dual graph of these graphs, i.e. graphs with triangular or quadrilateral "faces". The GC construction can be thought of as subdividing the faces of a polyhedron with a lattice of triangular, square, or hexagonal polygons, possibly skewed with regards to the original face: it is an extension of concepts introduced by the Goldberg polyhedra and geodesic polyhedra. The GC construction is primarily studied in organic chemistry for its application to fullerenes, but it has been applied to nanoparticles, computer-aided design, basket weaving, and the general study of graph theory and polyhedra.
Penders is a heritage-listed holiday retreat at Haighs Road, Tanja, Bega Valley Shire, New South Wales, Australia. It was designed by Roy Grounds and built from 1964 to 1980 by Hamish Ramsay and other local builders. It is also known as Grounds and Myer Holiday Retreat, the "Barn" and Myers House. The property is owned by Office of Environment and Heritage. It was added to the New South Wales State Heritage Register on 29 November 2013.