Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory.
While music theory has no axiomatic foundation in modern mathematics, the basis of musical sound can be described mathematically (using acoustics) and exhibits "a remarkable array of number properties". [1]
Though ancient Chinese, Indians, Egyptians and Mesopotamians are known to have studied the mathematical principles of sound, [2] the Pythagoreans (in particular Philolaus and Archytas) [3] of ancient Greece were the first researchers known to have investigated the expression of musical scales in terms of numerical ratios, [4] particularly the ratios of small integers. Their central doctrine was that "all nature consists of harmony arising out of numbers". [5]
From the time of Plato, harmony was considered a fundamental branch of physics, now known as musical acoustics. Early Indian and Chinese theorists show similar approaches: all sought to show that the mathematical laws of harmonics and rhythms were fundamental not only to our understanding of the world but to human well-being. [6] Confucius, like Pythagoras, regarded the small numbers 1,2,3,4 as the source of all perfection. [7]
Without the boundaries of rhythmic structure – a fundamental equal and regular arrangement of pulse repetition, accent, phrase and duration – music would not be possible. [8] Modern musical use of terms like meter and measure also reflects the historical importance of music, along with astronomy, in the development of counting, arithmetic and the exact measurement of time and periodicity that is fundamental to physics.[ citation needed ]
The elements of musical form often build strict proportions or hypermetric structures (powers of the numbers 2 and 3). [9]
Musical form is the plan by which a short piece of music is extended. The term "plan" is also used in architecture, to which musical form is often compared. Like the architect, the composer must take into account the function for which the work is intended and the means available, practicing economy and making use of repetition and order. [10] The common types of form known as binary and ternary ("twofold" and "threefold") once again demonstrate the importance of small integral values to the intelligibility and appeal of music. [11] [12]
A musical scale is a discrete set of pitches used in making or describing music. The most important scale in the Western tradition is the diatonic scale but many others have been used and proposed in various historical eras and parts of the world. Each pitch corresponds to a particular frequency, expressed in hertz (Hz), sometimes referred to as cycles per second (c.p.s.). A scale has an interval of repetition, normally the octave. The octave of any pitch refers to a frequency exactly twice that of the given pitch.
Succeeding superoctaves are pitches found at frequencies four, eight, sixteen times, and so on, of the fundamental frequency. Pitches at frequencies of half, a quarter, an eighth and so on of the fundamental are called suboctaves. There is no case in musical harmony where, if a given pitch be considered accordant, that its octaves are considered otherwise. Therefore, any note and its octaves will generally be found similarly named in musical systems (e.g. all will be called doh or A or Sa, as the case may be).
When expressed as a frequency bandwidth an octave A2–A3 spans from 110 Hz to 220 Hz (span=110 Hz). The next octave will span from 220 Hz to 440 Hz (span=220 Hz). The third octave spans from 440 Hz to 880 Hz (span=440 Hz) and so on. Each successive octave spans twice the frequency range of the previous octave.
Because we are often interested in the relations or ratios between the pitches (known as intervals) rather than the precise pitches themselves in describing a scale, it is usual to refer to all the scale pitches in terms of their ratio from a particular pitch, which is given the value of one (often written 1/1), generally a note which functions as the tonic of the scale. For interval size comparison, cents are often used.
Common term | Example name | Hz | Multiple of fundamental | Ratio of within octave | Cents within octave |
---|---|---|---|---|---|
Fundamental | A2 | 110 | 0 | ||
Octave | A3 | 220 | 1200 | ||
0 | |||||
Perfect Fifth | E4 | 330 | 702 | ||
Octave | A4 | 440 | 1200 | ||
0 | |||||
Major Third | C♯5 | 550 | 386 | ||
Perfect Fifth | E5 | 660 | 702 | ||
G5 | 770 | 969 | |||
Octave | A5 | 880 | 1200 | ||
0 |
There are two main families of tuning systems: equal temperament and just tuning. Equal temperament scales are built by dividing an octave into intervals which are equal on a logarithmic scale, which results in perfectly evenly divided scales, but with ratios of frequencies which are irrational numbers. Just scales are built by multiplying frequencies by rational numbers, which results in simple ratios between frequencies, but with scale divisions that are uneven.
One major difference between equal temperament tunings and just tunings is differences in acoustical beat when two notes are sounded together, which affects the subjective experience of consonance and dissonance. Both of these systems, and the vast majority of music in general, have scales that repeat on the interval of every octave, which is defined as frequency ratio of 2:1. In other words, every time the frequency is doubled, the given scale repeats.
Below are Ogg Vorbis files demonstrating the difference between just intonation and equal temperament. You might need to play the samples several times before you can detect the difference.
5-limit tuning, the most common form of just intonation, is a system of tuning using tones that are regular number harmonics of a single fundamental frequency. This was one of the scales Johannes Kepler presented in his Harmonices Mundi (1619) in connection with planetary motion. The same scale was given in transposed form by Scottish mathematician and musical theorist, Alexander Malcolm, in 1721 in his 'Treatise of Musick: Speculative, Practical and Historical', [13] and by theorist Jose Wuerschmidt in the 20th century. A form of it is used in the music of northern India.
American composer Terry Riley also made use of the inverted form of it in his "Harp of New Albion". Just intonation gives superior results when there is little or no chord progression: voices and other instruments gravitate to just intonation whenever possible. However, it gives two different whole tone intervals (9:8 and 10:9) because a fixed tuned instrument, such as a piano, cannot change key. [14] To calculate the frequency of a note in a scale given in terms of ratios, the frequency ratio is multiplied by the tonic frequency. For instance, with a tonic of A4 (A natural above middle C), the frequency is 440 Hz, and a justly tuned fifth above it (E5) is simply 440×(3:2) = 660 Hz.
Semitone | Ratio | Interval | Natural | Half Step |
---|---|---|---|---|
0 | 1:1 | unison | 480 | 0 |
1 | 16:15 | semitone | 512 | 16:15 |
2 | 9:8 | major second | 540 | 135:128 |
3 | 6:5 | minor third | 576 | 16:15 |
4 | 5:4 | major third | 600 | 25:24 |
5 | 4:3 | perfect fourth | 640 | 16:15 |
6 | 45:32 | diatonic tritone | 675 | 135:128 |
7 | 3:2 | perfect fifth | 720 | 16:15 |
8 | 8:5 | minor sixth | 768 | 16:15 |
9 | 5:3 | major sixth | 800 | 25:24 |
10 | 9:5 | minor seventh | 864 | 27:25 |
11 | 15:8 | major seventh | 900 | 25:24 |
12 | 2:1 | octave | 960 | 16:15 |
Pythagorean tuning is tuning based only on the perfect consonances, the (perfect) octave, perfect fifth, and perfect fourth. Thus the major third is considered not a third but a ditone, literally "two tones", and is (9:8)2 = 81:64, rather than the independent and harmonic just 5:4 = 80:64 directly below. A whole tone is a secondary interval, being derived from two perfect fifths minus an octave, (3:2)2/2 = 9:8.
The just major third, 5:4 and minor third, 6:5, are a syntonic comma, 81:80, apart from their Pythagorean equivalents 81:64 and 32:27 respectively. According to Carl Dahlhaus (1990 , p. 187), "the dependent third conforms to the Pythagorean, the independent third to the harmonic tuning of intervals."
Western common practice music usually cannot be played in just intonation but requires a systematically tempered scale. The tempering can involve either the irregularities of well temperament or be constructed as a regular temperament, either some form of equal temperament or some other regular meantone, but in all cases will involve the fundamental features of meantone temperament. For example, the root of chord ii, if tuned to a fifth above the dominant, would be a major whole tone (9:8) above the tonic. If tuned a just minor third (6:5) below a just subdominant degree of 4:3, however, the interval from the tonic would equal a minor whole tone (10:9). Meantone temperament reduces the difference between 9:8 and 10:9. Their ratio, (9:8)/(10:9) = 81:80, is treated as a unison. The interval 81:80, called the syntonic comma or comma of Didymus, is the key comma of meantone temperament.
In equal temperament, the octave is divided into equal parts on the logarithmic scale. While it is possible to construct equal temperament scale with any number of notes (for example, the 24-tone Arab tone system), the most common number is 12, which makes up the equal-temperament chromatic scale. In western music, a division into twelve intervals is commonly assumed unless it is specified otherwise.
For the chromatic scale, the octave is divided into twelve equal parts, each semitone (half-step) is an interval of the twelfth root of two so that twelve of these equal half steps add up to exactly an octave. With fretted instruments it is very useful to use equal temperament so that the frets align evenly across the strings. In the European music tradition, equal temperament was used for lute and guitar music far earlier than for other instruments, such as musical keyboards. Because of this historical force, twelve-tone equal temperament is now the dominant intonation system in the Western, and much of the non-Western, world.
Equally tempered scales have been used and instruments built using various other numbers of equal intervals. The 19 equal temperament, first proposed and used by Guillaume Costeley in the 16th century, uses 19 equally spaced tones, offering better major thirds and far better minor thirds than normal 12-semitone equal temperament at the cost of a flatter fifth. The overall effect is one of greater consonance. Twenty-four equal temperament, with twenty-four equally spaced tones, is widespread in the pedagogy and notation of Arabic music. However, in theory and practice, the intonation of Arabic music conforms to rational ratios, as opposed to the irrational ratios of equally tempered systems. [15]
While any analog to the equally tempered quarter tone is entirely absent from Arabic intonation systems, analogs to a three-quarter tone, or neutral second, frequently occur. These neutral seconds, however, vary slightly in their ratios dependent on maqam, as well as geography. Indeed, Arabic music historian Habib Hassan Touma has written that "the breadth of deviation of this musical step is a crucial ingredient in the peculiar flavor of Arabian music. To temper the scale by dividing the octave into twenty-four quarter-tones of equal size would be to surrender one of the most characteristic elements of this musical culture." [15]
53 equal temperament arises from the near equality of 53 perfect fifths with 31 octaves, and was noted by Jing Fang and Nicholas Mercator.
Musical set theory uses the language of mathematical set theory in an elementary way to organize musical objects and describe their relationships. To analyze the structure of a piece of (typically atonal) music using musical set theory, one usually starts with a set of tones, which could form motives or chords. By applying simple operations such as transposition and inversion, one can discover deep structures in the music. Operations such as transposition and inversion are called isometries because they preserve the intervals between tones in a set.
Expanding on the methods of musical set theory, some theorists have used abstract algebra to analyze music. For example, the pitch classes in an equally tempered octave form an abelian group with 12 elements. It is possible to describe just intonation in terms of a free abelian group. [16] [17]
Transformational theory is a branch of music theory developed by David Lewin. The theory allows for great generality because it emphasizes transformations between musical objects, rather than the musical objects themselves.
Theorists have also proposed musical applications of more sophisticated algebraic concepts. The theory of regular temperaments has been extensively developed with a wide range of sophisticated mathematics, for example by associating each regular temperament with a rational point on a Grassmannian.
The chromatic scale has a free and transitive action of the cyclic group , with the action being defined via transposition of notes. So the chromatic scale can be thought of as a torsor for the group.
Some composers have incorporated the golden ratio and Fibonacci numbers into their work. [18] [19]
The mathematician and musicologist Guerino Mazzola has used category theory (topos theory) for a basis of music theory, which includes using topology as a basis for a theory of rhythm and motives, and differential geometry as a basis for a theory of musical phrasing, tempo, and intonation. [20]
An equal temperament is a musical temperament or tuning system that approximates just intervals by dividing an octave into steps such that the ratio of the frequencies of any adjacent pair of notes is the same. This system yields pitch steps perceived as equal in size, due to the logarithmic changes in pitch frequency.
In music, just intonation or pure intonation is the tuning of musical intervals as whole number ratios of frequencies. An interval tuned in this way is said to be pure, and is called a just interval. Just intervals consist of tones from a single harmonic series of an implied fundamental. For example, in the diagram, if the notes G3 and C4 are tuned as members of the harmonic series of the lowest C, their frequencies will be 3 and 4 times the fundamental frequency. The interval ratio between C4 and G3 is therefore 4:3, a just fourth.
In music, there are two common meanings for tuning:
Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are determined by choosing a sequence of fifths which are "pure" or perfect, with ratio . This is chosen because it is the next harmonic of a vibrating string, after the octave, and hence is the next most consonant "pure" interval, and the easiest to tune by ear. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions." Alternatively, it can be described as the tuning of the syntonic temperament in which the generator is the ratio 3:2, which is ≈ 702 cents wide.
Meantone temperaments are musical temperaments; that is, a variety of tuning systems constructed, similarly to Pythagorean tuning, as a sequence of equal fifths, both rising and descending, scaled to remain within the same octave. But rather than using perfect fifths, consisting of frequency ratios of value , these are tempered by a suitable factor that narrows them to ratios that are slightly less than , in order to bring the major or minor thirds closer to the just intonation ratio of or , respectively. A regular temperament is one in which all the fifths are chosen to be of the same size.
In music theory, an interval is a difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord.
In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.
In music theory, the circle of fifths is a way of organizing pitches as a sequence of perfect fifths. Starting on a C, and using the standard system of tuning for Western music, the sequence is: C, G, D, A, E, B, F♯/G♭, C♯/D♭, G♯/A♭, D♯/E♭, A♯/B♭, F, and C. This order places the most closely related key signatures adjacent to one another.
A semitone, also called a minor second, half step, or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale, visually seen on a keyboard as the distance between two keys that are adjacent to each other. For example, C is adjacent to C♯; the interval between them is a semitone.
In music theory, a minor third is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions. The minor third is one of two commonly occurring thirds. It is called minor because it is the smaller of the two: the major third spans an additional semitone. For example, the interval from A to C is a minor third, as the note C lies three semitones above A. Coincidentally, there are three staff positions from A to C. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones. The minor third is a skip melodically.
Piano tuning is the process of adjusting the tension of the strings of an acoustic piano so that the musical intervals between strings are in tune. The meaning of the term 'in tune', in the context of piano tuning, is not simply a particular fixed set of pitches. Fine piano tuning requires an assessment of the vibration interaction among notes, which is different for every piano, thus in practice requiring slightly different pitches from any theoretical standard. Pianos are usually tuned to a modified version of the system called equal temperament.
In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Traditionally, there are two most common comma; the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F♯ tuned using the D-based Pythagorean tuning system, and another F♯ tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B♭ and A♯ are both approximated by the same interval although they are a septimal kleisma apart.
12 equal temperament (12-ET) is the musical system that divides the octave into 12 parts, all of which are equally tempered on a logarithmic scale, with a ratio equal to the 12th root of 2. That resulting smallest interval, 1⁄12 the width of an octave, is called a semitone or half step.
In musical tuning theory, a Pythagorean interval is a musical interval with a frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 31/ 21) and the perfect fourth with ratio 4/3 (equivalent to 22/ 31) are Pythagorean intervals.
In music, the septimal minor third, also called the subminor third or septimal subminor third, is the musical interval exactly or approximately equal to a 7/6 ratio of frequencies. In terms of cents, it is 267 cents, a quartertone of size 36/35 flatter than a just minor third of 6/5. In 24-tone equal temperament five quarter tones approximate the septimal minor third at 250 cents. A septimal minor third is almost exactly two-ninths of an octave, and thus all divisions of the octave into multiples of nine have an almost perfect match to this interval. The septimal major sixth, 12/7, is the inverse of this interval.
In musical tuning, a temperament is a tuning system that slightly compromises the pure intervals of just intonation to meet other requirements. Most modern Western musical instruments are tuned in the equal temperament system. Tempering is the process of altering the size of an interval by making it narrower or wider than pure. "Any plan that describes the adjustments to the sizes of some or all of the twelve fifth intervals in the circle of fifths so that they accommodate pure octaves and produce certain sizes of major thirds is called a temperament." Temperament is especially important for keyboard instruments, which typically allow a player to play only the pitches assigned to the various keys, and lack any way to alter pitch of a note in performance. Historically, the use of just intonation, Pythagorean tuning and meantone temperament meant that such instruments could sound "in tune" in one key, or some keys, but would then have more dissonance in other keys.
The harmonic seventh interval, also known as the septimal minor seventh, or subminor seventh, is one with an exact 7:4 ratio (about 969 cents). This is somewhat narrower than and is, "particularly sweet", "sweeter in quality" than an "ordinary" just minor seventh, which has an intonation ratio of 9:5 (about 1018 cents).
A regular diatonic tuning is any musical scale consisting of "tones" (T) and "semitones" (S) arranged in any rotation of the sequence TTSTTTS which adds up to the octave with all the T's being the same size and all the S's the being the same size, with the 'S's being smaller than the 'T's. In such a tuning, then the notes are connected together in a chain of seven fifths, all the same size which makes it a Linear temperament with the tempered fifth as a generator.
Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2−3·31·51 = 15/8.