Inverse | major sixth |
---|---|
Name | |
Other names | sesquitone |
Abbreviation | m3 |
Size | |
Semitones | 3 |
Interval class | 3 |
Just interval | 6:5, 19:16, 32:27 [1] |
Cents | |
12-Tone equal temperament | 300 |
Just intonation | 316, 298, 294 |
In music theory, a minor third is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions (see: interval number). The minor third is one of two commonly occurring thirds. It is called minor because it is the smaller of the two: the major third spans an additional semitone. For example, the interval from A to C is a minor third, as the note C lies three semitones above A. Coincidentally, there are three staff positions from A to C. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones (two and five). The minor third is a skip melodically.
Notable examples of ascending minor thirds include the opening two notes of "Greensleeves" and of "Light My Fire".
The minor third may be derived from the harmonic series as the interval between the fifth and sixth harmonics, or from the 19th harmonic.
The minor third is commonly used to express sadness in music, and research shows that this mirrors its use in speech, as a tone similar to a minor third is produced during sad speech. [2] It is also a quartal (based on an ascendance of one or more perfect fourths) tertian interval, as opposed to the major third's quintality. The minor third is also obtainable in reference to a fundamental note from the undertone series, while the major third is obtainable as such from the overtone series. (See Otonality and Utonality.)
The minor scale is so named because of the presence of this interval between its tonic and mediant (1st and 3rd) scale degrees. Minor chords too take their name from the presence of this interval built on the chord's root (provided that the interval of a perfect fifth from the root is also present or implied).
A minor third, in just intonation, corresponds to a pitch ratio of 6:5 or 315.64 cents. In an equal tempered tuning, a minor third is equal to three semitones, a ratio of 21/4:1 (about 1.189), or 300 cents, 15.64 cents narrower than the 6:5 ratio. In other meantone tunings it is wider, and in 19 equal temperament it is very nearly the 6:5 ratio of just intonation; in more complex schismatic temperaments, such as 53 equal temperament, the "minor third" is often significantly flat (being close to Pythagorean tuning (ⓘ )), although the " augmented second" produced by such scales is often within ten cents of a pure 6:5 ratio. If a minor third is tuned in accordance with the fundamental of the overtone series, the result is a ratio of 19:16 or 297.51 cents (the nineteenth harmonic). [3] The 12-TET minor third (300 cents) more closely approximates the nineteenth harmonic with only 2.49 cents error. [4] M. Ergo mistakenly claimed that the nineteenth harmonic was the highest ever written, for the bass-trumpet in Richard Wagner's Der Ring des Nibelungen (1848 to 1874), when Robert Schumann's Op. 86 Konzertstück for 4 Horns and Orchestra (1849) features the twentieth harmonic (four octaves and major third above the fundamental) in the first horn part three times. [5]
Other pitch ratios are given related names, the septimal minor third with ratio 7:6 and the tridecimal minor third with ratio 13:11 in particular.
The minor third is classed as an imperfect consonance and is considered one of the most consonant intervals after the unison, octave, perfect fifth, and perfect fourth.
The sopranino saxophone and E♭ clarinet sound in the concert pitch ( C ) a minor third higher than the written pitch; therefore, to get the sounding pitch one must transpose the written pitch up a minor third. Instruments in A – most commonly the A clarinet, sound a minor third lower than the written pitch.
In music theory, a semiditone (or Pythagorean minor third) [6] is the interval 32:27 (approximately 294.13 cents). It is the minor third in Pythagorean tuning. The 32:27 Pythagorean minor third arises in the 5-limit justly tuned major scale between the 2nd and 4th degrees (in the C major scale, between D and F). [7] ⓘ
It can be thought of as two octaves minus three justly tuned fifths. It is narrower than a justly tuned minor third by a syntonic comma. Its inversion is a Pythagorean major sixth.[ citation needed ]
An equal temperament is a musical temperament or tuning system that approximates just intervals by dividing an octave into steps such that the ratio of the frequencies of any adjacent pair of notes is the same. This system yields pitch steps perceived as equal in size, due to the logarithmic changes in pitch frequency.
In music, just intonation or pure intonation is the tuning of musical intervals as whole number ratios of frequencies. An interval tuned in this way is said to be pure, and is called a just interval. Just intervals consist of tones from a single harmonic series of an implied fundamental. For example, in the diagram, if the notes G3 and C4 are tuned as members of the harmonic series of the lowest C, their frequencies will be 3 and 4 times the fundamental frequency. The interval ratio between C4 and G3 is therefore 4:3, a just fourth.
In music, there are two common meanings for tuning:
Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are based on the ratio 3:2. This ratio, also known as the "pure" perfect fifth, is chosen because it is one of the most consonant and easiest to tune by ear and because of importance attributed to the integer 3. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions." Alternatively, it can be described as the tuning of the syntonic temperament in which the generator is the ratio 3:2, which is ≈ 702 cents wide.
Meantone temperaments are musical temperaments, that is a variety of tuning systems, obtained by narrowing the fifths so that their ratio is slightly less than 3:2, in order to push the thirds closer to pure. Meantone temperaments are constructed similarly to Pythagorean tuning, as a stack of equal fifths, but they are temperaments in that the fifths are not pure.
In music theory, an interval is a difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord.
In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.
A semitone, also called a half step or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale, visually seen on a keyboard as the distance between two keys that are adjacent to each other. For example, C is adjacent to C♯; the interval between them is a semitone.
In classical music, a third is a musical interval encompassing three staff positions, and the major third is a third spanning four half steps or two whole steps. Along with the minor third, the major third is one of two commonly occurring thirds. It is qualified as major because it is the larger interval of the two: the major third spans four semitones; the minor third, three. For example, the interval from C to E is a major third, as the note E lies four semitones above C, and there are three staff positions from C to E. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones.
The intervals from the tonic (keynote) in an upward direction to the second, to the third, to the sixth, and to the seventh scale degrees of a major scale are called major.
In music from Western culture, a sixth is a musical interval encompassing six note letter names or staff positions, and the major sixth is one of two commonly occurring sixths. It is qualified as major because it is the larger of the two. The major sixth spans nine semitones. Its smaller counterpart, the minor sixth, spans eight semitones. For example, the interval from C up to the nearest A is a major sixth. It is a sixth because it encompasses six note letter names and six staff positions. It is a major sixth, not a minor sixth, because the note A lies nine semitones above C. Diminished and augmented sixths span the same number of note letter names and staff positions, but consist of a different number of semitones.
The intervals from the tonic (keynote) in an upward direction to the second, to the third, to the sixth, and to the seventh scale degrees (of a major scale are called major.
In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Strictly speaking, there are only two kinds of comma, the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F♯ tuned using the D-based Pythagorean tuning system, and another F♯ tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B♭ and A♯ are both approximated by the same interval although they are a septimal kleisma apart.
Quarter-comma meantone, or 1 / 4 -comma meantone, was the most common meantone temperament in the sixteenth and seventeenth centuries, and was sometimes used later. In this system the perfect fifth is flattened by one quarter of a syntonic comma ( 81 : 80 ), with respect to its just intonation used in Pythagorean tuning ; the result is 3 / 2 × [ 80 / 81 ] 1 / 4 = 4√5 ≈ 1.49535, or a fifth of 696.578 cents. This fifth is then iterated to generate the diatonic scale and other notes of the temperament. The purpose is to obtain justly intoned major thirds. It was described by Pietro Aron in his Toscanello de la Musica of 1523, by saying the major thirds should be tuned to be "sonorous and just, as united as possible." Later theorists Gioseffo Zarlino and Francisco de Salinas described the tuning with mathematical exactitude.
12 equal temperament (12-ET) is the musical system that divides the octave into 12 parts, all of which are equally tempered on a logarithmic scale, with a ratio equal to the 12th root of 2. That resulting smallest interval, 1⁄12 the width of an octave, is called a semitone or half step.
In music, 53 equal temperament, called 53 TET, 53 EDO, or 53 ET, is the tempered scale derived by dividing the octave into 53 equal steps. Each step represents a frequency ratio of 21⁄53, or 22.6415 cents, an interval sometimes called the Holdrian comma.
In musical tuning theory, a Pythagorean interval is a musical interval with a frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 31/ 21) and the perfect fourth with ratio 4/3 (equivalent to 22/ 31) are Pythagorean intervals.
Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory.
In musical tuning, a temperament is a tuning system that slightly compromises the pure intervals of just intonation to meet other requirements. Most modern Western musical instruments are tuned in the equal temperament system. Tempering is the process of altering the size of an interval by making it narrower or wider than pure. "Any plan that describes the adjustments to the sizes of some or all of the twelve fifth intervals in the circle of fifths so that they accommodate pure octaves and produce certain sizes of major thirds is called a temperament." Temperament is especially important for keyboard instruments, which typically allow a player to play only the pitches assigned to the various keys, and lack any way to alter pitch of a note in performance. Historically, the use of just intonation, Pythagorean tuning and meantone temperament meant that such instruments could sound "in tune" in one key, or some keys, but would then have more dissonance in other keys.
A regular diatonic tuning is any musical scale consisting of "tones" (T) and "semitones" (S) arranged in any rotation of the sequence TTSTTTS which adds up to the octave with all the T's being the same size and all the S's the being the same size, with the 'S's being smaller than the 'T's. In such a tuning, then the notes are connected together in a chain of seven fifths, all the same size which makes it a Linear temperament with the tempered fifth as a generator.
Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2−3·31·51 = 15/8.