This article needs additional citations for verification .(September 2021) |
In music, there are two common meanings for tuning:
Tuning is the process of adjusting the pitch of one or many tones from musical instruments to establish typical intervals between these tones. Tuning is usually based on a fixed reference, such as A = 440 Hz. The term "out of tune" refers to a pitch/tone that is either too high (sharp) or too low (flat) in relation to a given reference pitch. While an instrument might be in tune relative to its own range of notes, it may not be considered 'in tune' if it does not match the chosen reference pitch. Some instruments become 'out of tune' with temperature, humidity, damage, or simply time, and must be readjusted or repaired. [1]
Different methods of sound production require different methods of adjustment:
The sounds of some instruments, notably unpitched percussion instrument such as cymbals, are of indeterminate pitch, and have irregular overtones not conforming to the harmonic series. See § Tuning of unpitched percussion instruments.
Tuning may be done aurally by sounding two pitches and adjusting one of them to match or relate to the other. A tuning fork or electronic tuning device may be used as a reference pitch, though in ensemble rehearsals often a piano is used (as its pitch cannot be adjusted for each performance). Symphony orchestras and concert bands usually tune to an A440 or a B♭, respectively, provided by the principal oboist or clarinetist, who tune to the keyboard if part of the performance. [2] When only strings are used, then the principal string (violinist) typically has sounded the tuning pitch, but some orchestras have used an electronic tone machine for tuning. [2] Tuning can also be done through a prior recording; this method uses simultaneous audio. [3]
Interference beats are used to objectively measure the accuracy of tuning. [4] As the two pitches approach a harmonic relationship, the frequency of beating decreases. When tuning a unison or octave it is desired to reduce the beating frequency until it cannot be detected. For other intervals, this is dependent on the tuning system being used.
Harmonics may be used to facilitate tuning of strings that are not themselves tuned to the unison.[ citation needed ] For example, lightly touching the highest string of a cello at the middle (at a node) while bowing produces the same pitch as doing the same a third of the way down its second-highest string. The resulting unison is more easily and quickly judged than the quality of the perfect fifth between the fundamentals of the two strings.
In music, the term open string refers to the fundamental note of the unstopped, full string.
The strings of a guitar are normally tuned to fourths (excepting the G and B strings in standard tuning, which are tuned to a third), as are the strings of the bass guitar and double bass. Violin, viola, and cello strings are tuned to fifths. However, non-standard tunings (called scordatura) exist to change the sound of the instrument or create other playing options.
To tune an instrument, often only one reference pitch is given. This reference is used to tune one string, to which the other strings are tuned in the desired intervals. On a guitar, often the lowest string is tuned to an E. From this, each successive string can be tuned by fingering the fifth fret of an already tuned string and comparing it with the next higher string played open. This works with the exception of the G string, which must be stopped at the fourth fret to sound B against the open B string above. Alternatively, each string can be tuned to its own reference tone.
Note that while the guitar and other modern stringed instruments with fixed frets are tuned in equal temperament, string instruments without frets, such as those of the violin family, are not. The violin, viola, and cello are tuned to beatless just perfect fifths and ensembles such as string quartets and orchestras tend to play in fifths based Pythagorean tuning or to compensate and play in equal temperament, such as when playing with other instruments such as the piano. For example, the cello, which is tuned down from A220, has three more strings (four total) and the just perfect fifth is about two cents off from the equal tempered perfect fifth, making its lowest string, C−, about six cents more flat than the equal tempered C.
This table lists open strings on some common string instruments and their standard tunings from low to high unless otherwise noted.
Instrument | Tuning |
---|---|
violin, mandolin, Irish tenor banjo | G, D, A, E |
viola, cello, tenor banjo, mandola, mandocello, tenor guitar | C, G, D, A |
double bass, mando-bass, bass guitar* | (B*,) E, A, D, G, (C*) |
guitar | E, A, D, G, B, E |
concert harp | C♭, D♭, E♭, F♭, G♭, A♭, B♭ (repeating) |
ukulele | G, C, E, A (the G string is higher than the C and E, and two half steps below the A string, known as reentrant tuning) |
5-string banjo | G, D, G, B, D (another reentrant tuning, with the short 5th string tuned an octave above the 3rd string) |
cavaquinho | D, G, B, D (standard Brazilian tuning) |
Violin scordatura was employed in the 17th and 18th centuries by Italian and German composers, namely, Biagio Marini, Antonio Vivaldi, Heinrich Ignaz Franz Biber (who in the Rosary Sonatas prescribes a great variety of scordaturas, including crossing the middle strings), Johann Pachelbel and Johann Sebastian Bach, whose Fifth Suite For Unaccompanied Cello calls for the lowering of the A string to G. In Mozart's Sinfonia Concertante in E-flat major (K. 364), all the strings of the solo viola are raised one half-step, ostensibly to give the instrument a brighter tone so the solo violin does not overshadow it.
Scordatura for the violin was also used in the 19th and 20th centuries in works by Niccolò Paganini, Robert Schumann, Camille Saint-Saëns, Gustav Mahler, and Béla Bartók. In Saint-Saëns' "Danse Macabre", the high string of the violin is lower half a tone to the E♭ so as to have the most accented note of the main theme sound on an open string. In Mahler's Symphony No. 4, the solo violin is tuned one whole step high to produce a harsh sound evoking Death as the Fiddler. In Bartók's Contrasts, the violin is tuned G♯-D-A-E♭ to facilitate the playing of tritones on open strings.
American folk violinists of the Appalachians and Ozarks often employ alternate tunings for dance songs and ballads. The most commonly used tuning is A-E-A-E. Likewise banjo players in this tradition use many tunings to play melody in different keys. A common alternative banjo tuning for playing in D is A-D-A-D-E. Many Folk guitar players also used different tunings from standard, such as D-A-D-G-A-D, which is very popular for Irish music.
A musical instrument that has had its pitch deliberately lowered during tuning is said to be down-tuned or tuned down. Common examples include the electric guitar and electric bass in contemporary heavy metal music, whereby one or more strings are often tuned lower than concert pitch. This is not to be confused with electronically changing the fundamental frequency, which is referred to as pitch shifting.
Many percussion instruments are tuned by the player, including pitched percussion instruments such as timpani and tabla, and unpitched percussion instruments such as the snare drum.
Tuning pitched percussion follows the same patterns as tuning any other instrument, but tuning unpitched percussion does not produce a specific pitch. For this reason and others, the traditional terms tuned percussion and untuned percussion are avoided in recent organology.
A tuning system is the system used to define which tones, or pitches, to use when playing music. In other words, it is the choice of number and spacing of frequency values used.
Due to the psychoacoustic interaction of tones and timbres, various tone combinations sound more or less "natural" in combination with various timbres. For example, using harmonic timbres:
More complex musical effects can be created through other relationships. [5]
The creation of a tuning system is complicated because musicians want to make music with more than just a few differing tones. As the number of tones is increased, conflicts arise in how each tone combines with every other. Finding a successful combination of tunings has been the cause of debate, and has led to the creation of many different tuning systems across the world. Each tuning system has its own characteristics, strengths and weaknesses.
It is impossible to tune the twelve-note chromatic scale so that all intervals are pure. For instance, three pure major thirds stack up to 125 / 64 , which at 1159 cents is nearly a quarter tone away from the octave (1200 cents). So there is no way to have both the octave and the major third in just intonation for all the intervals in the same twelve-tone system. Similar issues arise with the fifth 3/2, and the minor third 6 / 5 , or any other choice of harmonic-series based pure intervals.
Many different compromise methods are used to deal with this, each with its own characteristics, and advantages and disadvantages.
The main ones are:
Tuning systems that are not produced with exclusively just intervals are usually referred to as temperaments .
An equal temperament is a musical temperament or tuning system that approximates just intervals by dividing an octave into steps such that the ratio of the frequencies of any adjacent pair of notes is the same. This system yields pitch steps perceived as equal in size, due to the logarithmic changes in pitch frequency.
In music, just intonation or pure intonation is the tuning of musical intervals as whole number ratios of frequencies. An interval tuned in this way is said to be pure, and is called a just interval. Just intervals consist of tones from a single harmonic series of an implied fundamental. For example, in the diagram, if the notes G3 and C4 are tuned as members of the harmonic series of the lowest C, their frequencies will be 3 and 4 times the fundamental frequency. The interval ratio between C4 and G3 is therefore 4:3, a just fourth.
Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are determined by choosing a sequence of fifths which are "pure" or perfect, with ratio . This is chosen because it is the next harmonic of a vibrating string, after the octave, and hence is the next most consonant "pure" interval, and the easiest to tune by ear. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions." Alternatively, it can be described as the tuning of the syntonic temperament in which the generator is the ratio 3:2, which is ≈ 702 cents wide.
Meantone temperaments are musical temperaments; that is, a variety of tuning systems constructed, similarly to Pythagorean tuning, as a sequence of equal fifths, both rising and descending, scaled to remain within the same octave. But rather than using perfect fifths, consisting of frequency ratios of value , these are tempered by a suitable factor that narrows them to ratios that are slightly less than , in order to bring the major or minor thirds closer to the just intonation ratio of or , respectively. A regular temperament is one in which all the fifths are chosen to be of the same size.
In music theory, the syntonic comma, also known as the chromatic diesis, the Didymean comma, the Ptolemaic comma, or the diatonic comma is a small comma type interval between two musical notes, equal to the frequency ratio 81/80 (= 1.0125). Two notes that differ by this interval would sound different from each other even to untrained ears, but would be close enough that they would be more likely interpreted as out-of-tune versions of the same note than as different notes. The comma is also referred to as a Didymean comma because it is the amount by which Didymus corrected the Pythagorean major third to a just / harmonicly consonant major third.
In music theory, the wolf fifth is a particularly dissonant musical interval spanning seven semitones. Strictly, the term refers to an interval produced by a specific tuning system, widely used in the sixteenth and seventeenth centuries: the quarter-comma meantone temperament. More broadly, it is also used to refer to similar intervals produced by other tuning systems, including Pythagorean and most meantone temperaments.
A semitone, also called a minor second, half step, or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale, visually seen on a keyboard as the distance between two keys that are adjacent to each other. For example, C is adjacent to C♯; the interval between them is a semitone.
In music theory, a minor third is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions. The minor third is one of two commonly occurring thirds. It is called minor because it is the smaller of the two: the major third spans an additional semitone. For example, the interval from A to C is a minor third, as the note C lies three semitones above A. Coincidentally, there are three staff positions from A to C. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones. The minor third is a skip melodically.
Piano tuning is the process of adjusting the tension of the strings of an acoustic piano so that the musical intervals between strings are in tune. The meaning of the term 'in tune', in the context of piano tuning, is not simply a particular fixed set of pitches. Fine piano tuning requires an assessment of the vibration interaction among notes, which is different for every piano, thus in practice requiring slightly different pitches from any theoretical standard. Pianos are usually tuned to a modified version of the system called equal temperament.
In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Traditionally, there are two most common comma; the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F♯ tuned using the D-based Pythagorean tuning system, and another F♯ tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B♭ and A♯ are both approximated by the same interval although they are a septimal kleisma apart.
Quarter-comma meantone, or 1 / 4 -comma meantone, was the most common meantone temperament in the sixteenth and seventeenth centuries, and was sometimes used later. In this system the perfect fifth is flattened by one quarter of a syntonic comma ( 81 : 80 ), with respect to its just intonation used in Pythagorean tuning ; the result is 3 / 2 × [ 80 / 81 ] 1 / 4 = 4√5 ≈ 1.49535, or a fifth of 696.578 cents. This fifth is then iterated to generate the diatonic scale and other notes of the temperament. The purpose is to obtain justly intoned major thirds. It was described by Pietro Aron in his Toscanello de la Musica of 1523, by saying the major thirds should be tuned to be "sonorous and just, as united as possible." Later theorists Gioseffo Zarlino and Francisco de Salinas described the tuning with mathematical exactitude.
12 equal temperament (12-ET) is the musical system that divides the octave into 12 parts, all of which are equally tempered on a logarithmic scale, with a ratio equal to the 12th root of 2. That resulting smallest interval, 1⁄12 the width of an octave, is called a semitone or half step.
In musical tuning theory, a Pythagorean interval is a musical interval with a frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 31/ 21) and the perfect fourth with ratio 4/3 (equivalent to 22/ 31) are Pythagorean intervals.
The Kirnberger temperaments are three irregular temperaments developed in the second half of the 18th century by Johann Kirnberger. Kirnberger was a student of Johann Sebastian Bach who greatly admired his teacher; he was one of Bach's principal proponents.
In music, the septimal minor third, also called the subminor third or septimal subminor third, is the musical interval exactly or approximately equal to a 7/6 ratio of frequencies. In terms of cents, it is 267 cents, a quartertone of size 36/35 flatter than a just minor third of 6/5. In 24-tone equal temperament five quarter tones approximate the septimal minor third at 250 cents. A septimal minor third is almost exactly two-ninths of an octave, and thus all divisions of the octave into multiples of nine have an almost perfect match to this interval. The septimal major sixth, 12/7, is the inverse of this interval.
Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory.
In musical tuning, a temperament is a tuning system that slightly compromises the pure intervals of just intonation to meet other requirements. Most modern Western musical instruments are tuned in the equal temperament system. Tempering is the process of altering the size of an interval by making it narrower or wider than pure. "Any plan that describes the adjustments to the sizes of some or all of the twelve fifth intervals in the circle of fifths so that they accommodate pure octaves and produce certain sizes of major thirds is called a temperament." Temperament is especially important for keyboard instruments, which typically allow a player to play only the pitches assigned to the various keys, and lack any way to alter pitch of a note in performance. Historically, the use of just intonation, Pythagorean tuning and meantone temperament meant that such instruments could sound "in tune" in one key, or some keys, but would then have more dissonance in other keys.
The harmonic seventh interval, also known as the septimal minor seventh, or subminor seventh, is one with an exact 7:4 ratio (about 969 cents). This is somewhat narrower than and is, "particularly sweet", "sweeter in quality" than an "ordinary" just minor seventh, which has an intonation ratio of 9:5 (about 1018 cents).
A regular diatonic tuning is any musical scale consisting of "tones" (T) and "semitones" (S) arranged in any rotation of the sequence TTSTTTS which adds up to the octave with all the T's being the same size and all the S's the being the same size, with the 'S's being smaller than the 'T's. In such a tuning, then the notes are connected together in a chain of seven fifths, all the same size which makes it a Linear temperament with the tempered fifth as a generator.