List of pitch intervals

Last updated

Comparison between tunings: Pythagorean, equal-tempered, quarter-comma meantone, and others. For each, the common origin is arbitrarily chosen as C. The degrees are arranged in the order or the cycle of fifths; as in each of these tunings except just intonation all fifths are of the same size, the tunings appear as straight lines, the slope indicating the relative tempering with respect to Pythagorean, which has pure fifths (3:2, 702 cents). The Pythagorean A (at the left) is at 792 cents, G# (at the right) at 816 cents; the difference is the Pythagorean comma. Equal temperament by definition is such that A and G# are at the same level.
.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
1/4-comma meantone produces the "just" major third (5:4, 386 cents, a syntonic comma lower than the Pythagorean one of 408 cents).
1/3-comma meantone produces the "just" minor third (6:5, 316 cents, a syntonic comma higher than the Pythagorean one of 294 cents). In both these meantone temperaments, the enharmony, here the difference between A and G#, is much larger than in Pythagorean, and with the flat degree higher than the sharp one. Meantone comparison.png
Comparison between tunings: Pythagorean, equal-tempered, quarter-comma meantone, and others. For each, the common origin is arbitrarily chosen as C. The degrees are arranged in the order or the cycle of fifths; as in each of these tunings except just intonation all fifths are of the same size, the tunings appear as straight lines, the slope indicating the relative tempering with respect to Pythagorean, which has pure fifths (3:2, 702 cents). The Pythagorean A (at the left) is at 792 cents, G (at the right) at 816 cents; the difference is the Pythagorean comma. Equal temperament by definition is such that A and G are at the same level. 14-comma meantone produces the "just" major third (5:4, 386 cents, a syntonic comma lower than the Pythagorean one of 408 cents). 13-comma meantone produces the "just" minor third (6:5, 316 cents, a syntonic comma higher than the Pythagorean one of 294 cents). In both these meantone temperaments, the enharmony, here the difference between A and G, is much larger than in Pythagorean, and with the flat degree higher than the sharp one.
Comparison of two sets of musical intervals. The equal-tempered intervals are black; the Pythagorean intervals are green. Music intervals frequency ratio equal tempered pythagorean comparison.svg
Comparison of two sets of musical intervals. The equal-tempered intervals are black; the Pythagorean intervals are green.

Below is a list of intervals expressible in terms of a prime limit (see Terminology), completed by a choice of intervals in various equal subdivisions of the octave or of other intervals.

Contents

For commonly encountered harmonic or melodic intervals between pairs of notes in contemporary Western music theory, without consideration of the way in which they are tuned, see Interval (music) § Main intervals.

Terminology

List

ColumnLegend
TETX-tone equal temperament (12-tet, etc.).
Limit3-limit intonation, or Pythagorean.
5-limit "just" intonation, or just.
7-limit intonation, or septimal.
11-limit intonation, or undecimal.
13-limit intonation, or tridecimal.
17-limit intonation, or septendecimal.
19-limit intonation, or novendecimal.
Higher limits.
MMeantone temperament or tuning.
SSuperparticular ratio (no separate color code).
List of musical intervals
CentsNote (from C)Freq. ratioPrime factorsInterval nameTETLimitMS
0.00
C [2] 1 : 11 : 1 play Unison, [3] monophony, [4] perfect prime, [3] tonic, [5] or fundamental 1, 123M
0.03
65537 : 6553665537 : 216 play Sixty-five-thousand-five-hundred-thirty-seventh harmonic 65537S
0.40
C 7 rightside up.png 4375 : 437454×7 : 2×37 play Ragisma [3] [6] 7S
0.72
E 7 rightside up.png 7 rightside up.png 7 rightside up.png 7 rightside up.png Llpd-3.svg +2401 : 240074 : 25×3×52 play Breedsma [3] [6] 7S
1.00
21/120021/1200 play Cent [7] 1200
1.20
21/100021/1000 play Millioctave 1000
1.95
B++32805 : 3276838×5 : 215 play Schisma [3] [5] 5
1.96
3:2÷(27/12)3 : 219/12 Grad, Werckmeister [8]
3.99
101/100021/1000×51/1000 play Savart or eptaméride301.03
7.71
B 7 upside down.png 225 : 22432×52 : 25×7 play Septimal kleisma, [3] [6] marvel comma7S
8.11
B DoubleSharp.svg 15625 : 1555256 : 26×35 play Kleisma or semicomma majeur [3] [6] 5
10.06
A DoubleSharp.svg DoubleSharp.svg ++2109375 : 209715233×57 : 221 play Semicomma, [3] [6] Fokker's comma [3] 5
10.85
C 53 upside down.png 160 : 15925×5 : 3×53 play Difference between 5:3 & 53:3253S
11.98
C 29 rightside up.png 145 : 1445×29 : 24×32 play Difference between 29:16 & 9:529S
12.50
21/9621/96 play Sixteenth tone 96
13.07
B 7 upside down.png 7 upside down.png 7 upside down.png 1728 : 171526×33 : 5×73 play Orwell comma [3] [9] 7
13.47
C 43 rightside up.png 129 : 1283×43 : 27 play Hundred-twenty-ninth harmonic43S
13.79
D Doubleflat.svg 7 rightside up.png 126 : 1252×32×7 : 53 play Small septimal semicomma, [6] small septimal comma, [3] starling comma7S
14.37
C121 : 120112 : 23×3×5 play Undecimal seconds comma [3] 11S
16.67
C [lower-alpha 1] 21/7221/72 play 1 step in 72 equal temperament 72
18.13
C 19 upside down.png 96 : 9525×3 : 5×19 play Difference between 19:16 & 6:519S
19.55
D Doubleflat.svg -- [2] 2048 : 2025211 : 34×52 play Diaschisma, [3] [6] minor comma5
21.51
C+ [2] 81 : 8034 : 24×5 play Syntonic comma, [3] [5] [6] major comma, komma, chromatic diesis, or comma of Didymus [3] [6] [10] [11] 5S
22.64
21/5321/53 play Holdrian comma, Holder's comma, 1 step in 53 equal temperament 53
23.46
B+++531441 : 524288312 : 219 play Pythagorean comma, [3] [5] [6] [10] [11] ditonic comma [3] [6] 3
25.00
21/4821/48 play Eighth tone 48
26.84
C 13 rightside up.png 65 : 645×13 : 26 play Sixty-fifth harmonic, [5] 13th-partial chroma [3] 13S
27.26
C 7 upside down.png 64 : 6326 : 32×7 play Septimal comma, [3] [6] [11] Archytas' comma, [3] 63rd subharmonic7S
29.27
21/4121/41 play 1 step in 41 equal temperament 41
31.19
D 7 rightside up.png 56 : 5523×7 : 5×11 play Undecimal diesis, [3] Ptolemy's enharmonic: [5] difference between (11 : 8) and (7 : 5) tritone11S
33.33
C Half up arrow.png /D Half down arrow.png Half down arrow.png [lower-alpha 1] 21/3621/36 play Sixth tone 36, 72
34.28
C 17 rightside up.png 51 : 503×17 : 2×52 play Difference between 17:16 & 25:2417S
34.98
B 7 upside down.png 7 upside down.png -50 : 492×52 : 72 play Septimal sixth tone or jubilisma, Erlich's decatonic comma or tritonic diesis [3] [6] 7S
35.70
D 7 rightside up.png 7 rightside up.png 49 : 4872 : 24×3 play Septimal diesis, slendro diesis or septimal 1/6-tone [3] 7S
38.05
C 23 rightside up.png 46 : 452×23 : 32×5 play Inferior quarter tone, [5] difference between 23:16 & 45:3223S
38.71
21/3121/31 play 1 step in 31 equal temperament or Normal Diesis 31
38.91
C+45 : 4432×5 : 4×11 play Undecimal diesis or undecimal fifth tone 11S
40.00
21/3021/30 play Fifth tone 30
41.06
D Doubleflat.svg 128 : 12527 : 53 play Enharmonic diesis or 5-limit limma, minor diesis, [6] diminished second, [5] [6] minor diesis or diesis, [3] 125th subharmonic5
41.72
D 41 upside down.png 7 rightside up.png 42 : 412×3×7 : 41 play Lesser 41-limit fifth tone41S
42.75
C 41 rightside up.png 41 : 4041 : 23×5 play Greater 41-limit fifth tone41S
43.83
C 13 upside down.png 40 : 3923×5 : 3×13 play Tridecimal fifth tone13S
44.97
C 19 upside down.png 13 rightside up.png 39 : 383×13 : 2×19 play Superior quarter-tone, [5] novendecimal fifth tone19S
46.17
D 37 upside down.png 19 rightside up.png Doubleflat.svg -38 : 372×19 : 37 play Lesser 37-limit quarter tone37S
47.43
C 37 rightside up.png 37 : 3637 : 22×32 play Greater 37-limit quarter tone37S
48.77
C 7 upside down.png 36 : 3522×32 : 5×7 play Septimal quarter tone, septimal diesis, [3] [6] septimal chroma, [2] superior quarter tone [5] 7S
49.98
246 : 2393×41 : 239 play Just quarter tone [11] 239
50.00
C Arabic music notation half sharp.svg /D Three quarter flat.svg 21/2421/24 play Equal-tempered quarter tone 24
50.18
D 17 upside down.png 7 rightside up.png 35 : 345×7 : 2×17 play ET quarter-tone approximation, [5] lesser 17-limit quarter tone17S
50.72
B 7 upside down.png ++59049 : 57344310 : 213×7 play Harrison's comma (10 P5s – 1 H7) [3] 7
51.68
C 17 rightside up.png 34 : 332×17 : 3×11 play Greater 17-limit quarter tone17S
53.27
C33 : 323×11 : 25 play Thirty-third harmonic, [5] undecimal comma, undecimal quarter tone11S
54.96
D 31 upside down.png -32 : 3125 : 31 play Inferior quarter-tone, [5] thirty-first subharmonic31S
56.55
B 23 rightside up.png 23 rightside up.png +529 : 512232 : 29 play Five-hundred-twenty-ninth harmonic23
56.77
C 31 rightside up.png 31 : 3031 : 2×3×5 play Greater quarter-tone, [5] difference between 31:16 & 15:831S
58.69
C 29 upside down.png 30 : 292×3×5 : 29 play Lesser 29-limit quarter tone29S
60.75
C 29 rightside up.png 7 upside down.png 29 : 2829 : 22×7 play Greater 29-limit quarter tone29S
62.96
D 7 rightside up.png -28 : 2722×7 : 33 play Septimal minor second, small minor second, inferior quarter tone [5] 7S
63.81
(3 : 2)1/1131/11 : 21/11 play Beta scale step18.75
65.34
C 13 upside down.png +27 : 2633 : 2×13 play Chromatic diesis, [12] tridecimal comma [3] 13S
66.34
D 19 rightside up.png 7 rightside up.png 133 : 1287×19 : 27 play One-hundred-thirty-third harmonic19
66.67
C Sims flagged arrow down.svg /C Half down arrow.png [lower-alpha 1] 21/1821/18 play Third tone 18, 36, 72
67.90
D 13 rightside up.png Doubleflat.svg -26 : 252×13 : 52 play Tridecimal third tone, third tone [5] 13S
70.67
C [2] 25 : 2452 : 23×3 play Just chromatic semitone or minor chroma, [3] lesser chromatic semitone, small (just) semitone [11] or minor second, [4] minor chromatic semitone, [13] or minor semitone, [5] 27-comma meantone chromatic semitone, augmented unison5S
73.68
D 23 upside down.png -24 : 2323×3 : 23 play Lesser 23-limit semitone23S
75.00
21/1623/48 play 1 step in 16 equal temperament, 3 steps in 4816, 48
76.96
C 23 rightside up.png +23 : 2223 : 2×11 play Greater 23-limit semitone23S
78.00
(3 : 2)1/931/9 : 21/9 play Alpha scale step15.39
79.31
67 : 6467 : 26 play Sixty-seventh harmonic [5] 67
80.54
C 7 upside down.png -22 : 212×11 : 3×7 play Hard semitone, [5] two-fifth tone small semitone11S
84.47
D 7 rightside up.png 21 : 203×7 : 22×5 play Septimal chromatic semitone, minor semitone [3] 7S
88.80
C 19 upside down.png 20 : 1922×5 : 19 play Novendecimal augmented unison19S
90.22
D−− [2] 256 : 24328 : 35 play Pythagorean minor second or limma, [3] [6] [11] Pythagorean diatonic semitone, Low Semitone [14] 3
92.18
C+ [2] 135 : 12833×5 : 27 play Greater chromatic semitone, chromatic semitone, semitone medius, major chroma or major limma, [3] small limma, [11] major chromatic semitone, [13] limma ascendant [5] 5
93.60
D 19 rightside up.png -19 : 1819 : 2×9Novendecimal minor second play 19S
97.36
D↓↓128 : 12127 : 112 play 121st subharmonic, [5] [6] undecimal minor second11
98.95
D 17 upside down.png 18 : 172×32 : 17 play Just minor semitone, Arabic lute index finger [3] 17S
100.00
C/D21/1221/12 play Equal-tempered minor second or semitone 12M
104.96
C 17 rightside up.png [2] 17 : 1617 : 24 play Minor diatonic semitone, just major semitone, overtone semitone, [5] 17th harmonic, [3] limma[ citation needed ]17S
111.45
255(5 : 1)1/25 play Studie II interval (compound just major third, 5:1, divided into 25 equal parts)25
111.73
D- [2] 16 : 1524 : 3×5 play Just minor second, [15] just diatonic semitone, large just semitone or major second, [4] major semitone, [5] limma, minor diatonic semitone, [3] diatonic second [16] semitone, [14] diatonic semitone, [11] 16-comma meantone minor second5S
113.69
C++2187 : 204837 : 211 play Apotome [3] [11] or Pythagorean major semitone, [6] Pythagorean augmented unison, Pythagorean chromatic semitone, or Pythagorean apotome 3
116.72
(18 : 5)1/1921/19×32/19 : 51/19 play Secor 10.28
119.44
C 7 upside down.png 15 : 143×5 : 2×7 play Septimal diatonic semitone, major diatonic semitone, [3] Cowell semitone [5] 7S
125.00
25/4825/48 play 5 steps in 48 equal temperament48
128.30
D 13 upside down.png 7 rightside up.png 14 : 132×7 : 13 play Lesser tridecimal 2/3-tone [17] 13S
130.23
C 23 rightside up.png +69 : 643×23 : 26 play Sixty-ninth harmonic [5] 23
133.24
D27 : 2533 : 52 play Semitone maximus, minor second, large limma or Bohlen-Pierce small semitone, [3] high semitone, [14] alternate Renaissance half-step, [5] large limma, acute minor second[ citation needed ]5
133.33
C Half up arrow.png /D Half up arrow.png [lower-alpha 1] 21/922/18 play Two-third tone 9, 18, 36, 72
138.57
D 13 rightside up.png -13 : 1213 : 22×3 play Greater tridecimal 2/3-tone, [17] Three-quarter tone [5] 13S
150.00
C Llpd+1 1/2 .svg /D Llpd- 1/2 .svg 23/2421/8 play Equal-tempered neutral second 8, 24
150.64
D↓ [2] 12 : 1122×3 : 11 play 34 tone or Undecimal neutral second, [3] [5] trumpet three-quarter tone, [11] middle finger [between frets] [14] 11S
155.14
D 7 rightside up.png 35 : 325×7 : 25 play Thirty-fifth harmonic [5] 7
160.90
D−−800 : 72925×52 : 36 play Grave whole tone, [3] neutral second, grave major second[ citation needed ]5
165.00
D [2] 11 : 1011 : 2×5 play Greater undecimal minor/major/neutral second, 4/5-tone [6] or Ptolemy's second [3] 11S
171.43
21/721/7 play 1 step in 7 equal temperament 7
175.00
27/4827/48 play 7 steps in 48 equal temperament48
179.70
71 : 6471 : 26 play Seventy-first harmonic [5] 71
180.45
E Doubleflat.svg −−−65536 : 59049216 : 310 play Pythagorean diminished third, [3] [6] Pythagorean minor tone3
182.40
D− [2] 10 : 92×5 : 32 play Small just whole tone or major second, [4] minor whole tone, [3] [5] lesser whole tone, [16] minor tone, [14] minor second, [11] half-comma meantone major second5S
200.00
D22/1221/6 play Equal-tempered major second 6, 12M
203.91
D [2] 9 : 832 : 23 play Pythagorean major second, Large just whole tone or major second [11] (sesquioctavan), [4] tonus, major whole tone, [3] [5] greater whole tone, [16] major tone [14] 3S
215.89
D 29 rightside up.png 145 : 1285×29 : 27 play Hundred-forty-fifth harmonic29
223.46
E Doubleflat.svg [2] 256 : 22528 : 32×52 play Just diminished third, [16] 225th subharmonic5
225.00
23/1629/48 play 9 steps in 48 equal temperament16, 48
227.79
73 : 6473 : 26 play Seventy-third harmonic [5] 73
231.17
D 7 upside down.png [2] 8 : 723 : 7 play Septimal major second, [4] septimal whole tone [3] [5] 7S
240.00
21/521/5 play 1 step in 5 equal temperament 5
247.74
D 13 upside down.png 15 : 133×5 : 13 play Tridecimal 54 tone [3] 13
250.00
D Arabic music notation half sharp.svg /E Three quarter flat.svg 25/2425/24 play 5 steps in 24 equal temperament24
251.34
D 37 rightside up.png 37 : 3237 : 25 play Thirty-seventh harmonic [5] 37
253.08
D125 : 10853 : 22×33 play Semi-augmented whole tone, [3] semi-augmented second[ citation needed ]5
262.37
E↓64 : 5526 : 5×11 play 55th subharmonic [5] [6] 11
266.87
E 7 rightside up.png [2] 7 : 67 : 2×3 play Septimal minor third [3] [4] [11] or Sub minor third [14] 7S
268.80
D 23 rightside up.png 13 rightside up.png 299 : 25613×23 : 28 play Two-hundred-ninety-ninth harmonic23
274.58
D [2] 75 : 643×52 : 26 play Just augmented second, [16] Augmented tone, [14] augmented second [5] [13] 5
275.00
211/48211/48 play 11 steps in 48 equal temperament48
289.21
E 13 rightside up.png 13 : 1113 : 11 play Tridecimal minor third [3] 13
294.13
E [2] 32 : 2725 : 33 play Pythagorean minor third [3] [5] [6] [14] [16] semiditone, or 27th subharmonic3
297.51
E 19 rightside up.png [2] 19 : 1619 : 24 play 19th harmonic, [3] 19-limit minor third, overtone minor third [5] 19
300.00
D/E23/1221/4 play Equal-tempered minor third 4, 12M
301.85
D 7 upside down.png -25 : 21 [5] 52 : 3×7 play Quasi-equal-tempered minor third, 2nd 7-limit minor third, Bohlen-Pierce second [3] [6] 7
310.26
6:5÷(81:80)1/422 : 53/4 play Quarter-comma meantone minor thirdM
311.98
(3 : 2)4/934/9 : 24/9 play Alpha scale minor third 3.85
315.64
E [2] 6 : 52×3 : 5 play Just minor third, [3] [4] [5] [11] [16] minor third, [14] 13-comma meantone minor third5MS
317.60
D++19683 : 1638439 : 214 play Pythagorean augmented second [3] [6] 3
320.14
E 7 rightside up.png 77 : 647×11 : 26 play Seventy-seventh harmonic [5] 11
325.00
213/48213/48 play 13 steps in 48 equal temperament48
336.13
D 17 rightside up.png 7 upside down.png -17 : 1417 : 2×7 play Superminor third [18] 17
337.15
E+243 : 20035 : 23×52 play Acute minor third [3] 5
342.48
E 13 rightside up.png 39 : 323×13 : 25 play Thirty-ninth harmonic [5] 13
342.86
22/722/7 play 2 steps in 7 equal temperament 7
342.91
E 7 upside down.png -128 : 10527 : 3×5×7 play 105th subharmonic, [5] septimal neutral third [6] 7
347.41
E [2] 11 : 911 : 32 play Undecimal neutral third [3] [5] 11
350.00
D Llpd+1 1/2 .svg /E Llpd- 1/2 .svg 27/2427/24 play Equal-tempered neutral third 24
354.55
E+27 : 2233 : 2×11 play Zalzal's wosta [6] 12:11 X 9:8 [14] 11
359.47
E 13 upside down.png [2] 16 : 1324 : 13 play Tridecimal neutral third [3] 13
364.54
79 : 6479 : 26 play Seventy-ninth harmonic [5] 79
364.81
E−100 : 8122×52 : 34 play Grave major third [3] 5
375.00
25/16215/48 play 15 steps in 48 equal temperament16, 48
384.36
F−−8192 : 6561213 : 38 play Pythagorean diminished fourth, [3] [6] Pythagorean 'schismatic' third [5] 3
386.31
E [2] 5 : 45 : 22 play Just major third, [3] [4] [5] [11] [16] major third, [14] quarter-comma meantone major third5MS
397.10
E 23 rightside up.png 7 rightside up.png +161 : 1287×23 : 27 play One-hundred-sixty-first harmonic23
400.00
E24/1221/3 play Equal-tempered major third 3, 12M
402.47
E 19 rightside up.png 17 rightside up.png 323 : 25617×19 : 28 play Three-hundred-twenty-third harmonic19
407.82
E+ [2] 81 : 6434 : 26 play Pythagorean major third, [3] [5] [6] [14] [16] ditone 3
417.51
F 7 rightside up.png + [2] 14 : 112×7 : 11 play Undecimal diminished fourth or major third [3] 11
425.00
217/48217/48 play 17 steps in 48 equal temperament48
427.37
F [2] 32 : 2525 : 52 play Just diminished fourth, [16] diminished fourth, [5] [13] 25th subharmonic5
429.06
E 41 rightside up.png 41 : 3241 : 25 play Forty-first harmonic [5] 41
435.08
E 7 upside down.png [2] 9 : 732 : 7 play Septimal major third, [3] [5] Bohlen-Pierce third, [3] Super major Third [14] 7
444.77
F↓128 : 9927 : 9×11 play 99th subharmonic [5] [6] 11
450.00
E Arabic music notation half sharp.svg /F Llpd- 1/2 .svg 29/2429/24 play 9 steps in 24 equal temperament24
450.05
83 : 6483 : 26 play Eighty-third harmonic [5] 83
454.21
F 13 rightside up.png 13 : 1013 : 2×5 play Tridecimal major third or diminished fourth13
456.99
E [2] 125 : 9653 : 25×3 play Just augmented third, augmented third [5] 5
462.35
E 7 upside down.png 7 upside down.png -64 : 4926 : 72 play 49th subharmonic [5] [6] 7
470.78
F 7 rightside up.png + [2] 21 : 163×7 : 24 play Twenty-first harmonic, narrow fourth, [3] septimal fourth, [5] wide augmented third,[ citation needed ] H7 on G7
475.00
219/48219/48 play 19 steps in 48 equal temperament48
478.49
E+675 : 51233×52 : 29 play Six-hundred-seventy-fifth harmonic, wide augmented third [3] 5
480.00
22/522/5 play 2 steps in 5 equal temperament 5
491.27
E 17 rightside up.png 85 : 645×17 : 26 play Eighty-fifth harmonic [5] 17
498.04
F [2] 4 : 322 : 3 play Perfect fourth, [3] [5] [16] Pythagorean perfect fourth, Just perfect fourth or diatessaron [4] 3S
500.00
F25/1225/12 play Equal-tempered perfect fourth 12M
501.42
F 19 rightside up.png +171 : 12832×19 : 27 play One-hundred-seventy-first harmonic19
510.51
(3 : 2)8/1138/11 : 28/11 play Beta scale perfect fourth 18.75
511.52
F 43 rightside up.png 43 : 3243 : 25 play Forty-third harmonic [5] 43
514.29
23/723/7 play 3 steps in 7 equal temperament 7
519.55
F+ [2] 27 : 2033 : 22×5 play 5-limit wolf fourth, acute fourth, [3] imperfect fourth [16] 5
521.51
E+++177147 : 131072311 : 217 play Pythagorean augmented third [3] [6] (F+ (pitch))3
525.00
27/16221/48 play 21 steps in 48 equal temperament16, 48
531.53
F 29 rightside up.png +87 : 643×29 : 26 play Eighty-seventh harmonic [5] 29
536.95
F+15 : 113×5 : 11 play Undecimal augmented fourth [3] 11
550.00
F Arabic music notation half sharp.svg /G Three quarter flat.svg 211/24211/24 play 11 steps in 24 equal temperament24
551.32
F [2] 11 : 811 : 23 play eleventh harmonic, [5] undecimal tritone, [5] lesser undecimal tritone, undecimal semi-augmented fourth [3] 11
563.38
F 13 upside down.png +18 : 132×9 : 13 play Tridecimal augmented fourth [3] 13
568.72
F [2] 25 : 1852 : 2×32 play Just augmented fourth [3] [5] 5
570.88
89 : 6489 : 26 play Eighty-ninth harmonic [5] 89
575.00
223/48223/48 play 23 steps in 48 equal temperament48
582.51
G 7 rightside up.png [2] 7 : 57 : 5 play Lesser septimal tritone, septimal tritone [3] [4] [5] Huygens' tritone or Bohlen-Pierce fourth, [3] septimal fifth, [11] septimal diminished fifth [19] 7
588.27
G−−1024 : 729210 : 36 play Pythagorean diminished fifth, [3] [6] low Pythagorean tritone [5] 3
590.22
F+ [2] 45 : 3232×5 : 25 play Just augmented fourth, just tritone, [4] [11] tritone, [6] diatonic tritone, [3] 'augmented' or 'false' fourth, [16] high 5-limit tritone, [5] 16-comma meantone augmented fourth5
595.03
G 19 rightside up.png 19 rightside up.png 361 : 256192 : 28 play Three-hundred-sixty-first harmonic19
600.00
F/G 26/12 21/2=2 play Equal-tempered tritone 2, 12M
609.35
G 13 rightside up.png 7 rightside up.png 91 : 647×13 : 26 play Ninety-first harmonic [5] 13
609.78
G [2] 64 : 4526 : 32×5 play Just tritone, [4] 2nd tritone, [6] 'false' fifth, [16] diminished fifth, [13] low 5-limit tritone, [5] 45th subharmonic5
611.73
F++729 : 51236 : 29 play Pythagorean tritone, [3] [6] Pythagorean augmented fourth, high Pythagorean tritone [5] 3
617.49
F 7 upside down.png [2] 10 : 72×5 : 7 play Greater septimal tritone, septimal tritone, [4] [5] Euler's tritone [3] 7
625.00
225/48225/48 play 25 steps in 48 equal temperament48
628.27
F 23 rightside up.png +23 : 1623 : 24 play Twenty-third harmonic, [5] classic diminished fifth[ citation needed ]23
631.28
G [2] 36 : 2522×32 : 52 play Just diminished fifth [5] 5
646.99
F 31 rightside up.png +93 : 643×31 : 26 play Ninety-third harmonic [5] 31
648.68
G↓ [2] 16 : 1124 : 11 play ` undecimal semi-diminished fifth [3] 11
650.00
F Llpd+1 1/2 .svg /G Llpd- 1/2 .svg 213/24213/24 play 13 steps in 24 equal temperament24
665.51
G 47 rightside up.png 47 : 3247 : 25 play Forty-seventh harmonic [5] 47
675.00
29/16227/48 play 27 steps in 48 equal temperament16, 48
678.49
A Doubleflat.svg −−−262144 : 177147218 : 311 play Pythagorean diminished sixth [3] [6] 3
680.45
G−40 : 2723×5 : 33 play 5-limit wolf fifth, [5] or diminished sixth, grave fifth, [3] [6] [11] imperfect fifth, [16] 5
683.83
G 19 rightside up.png 95 : 645×19 : 26 play Ninety-fifth harmonic [5] 19
684.82
E 23 rightside up.png 23 rightside up.png 23 rightside up.png DoubleSharp.svg ++12167 : 8192233 : 213 play 12167th harmonic23
685.71
24/7 : 1 play 4 steps in 7 equal temperament
691.20
3:2÷(81:80)1/22×51/2 : 3 play Half-comma meantone perfect fifthM
694.79
3:2÷(81:80)1/321/3×51/3 : 31/3 play 13-comma meantone perfect fifthM
695.81
3:2÷(81:80)2/721/7×52/7 : 31/7 play 27-comma meantone perfect fifthM
696.58
3:2÷(81:80)1/451/4 play Quarter-comma meantone perfect fifthM
697.65
3:2÷(81:80)1/531/5×51/5 : 21/5 play 15-comma meantone perfect fifthM
698.37
3:2÷(81:80)1/631/3×51/6 : 21/3 play 16-comma meantone perfect fifthM
700.00
G27/1227/12 play Equal-tempered perfect fifth 12M
701.89
231/53231/53 play 53-TET perfect fifth 53
701.96
G [2] 3 : 23 : 2 play Perfect fifth, [3] [5] [16] Pythagorean perfect fifth, Just perfect fifth or diapente, [4] fifth, [14] Just fifth [11] 3S
702.44
224/41224/41 play 41-TET perfect fifth 41
703.45
217/29217/29 play 29-TET perfect fifth 29
719.90
97 : 6497 : 26 play Ninety-seventh harmonic [5] 97
720.00
23/5 : 1 play 3 steps in 5 equal temperament5
721.51
A Doubleflat.svg 1024 : 675210 : 33×52 play Narrow diminished sixth [3] 5
725.00
229/48229/48 play 29 steps in 48 equal temperament48
729.22
G 7 upside down.png -32 : 2124 : 3×7 play 21st subharmonic, [5] [6] septimal diminished sixth 7
733.23
F 23 rightside up.png 17 rightside up.png DoubleSharp.svg +391 : 25617×23 : 28 play Three-hundred-ninety-first harmonic23
737.65
A 7 rightside up.png 7 rightside up.png +49 : 327×7 : 25 play Forty-ninth harmonic [5] 7
743.01
A Doubleflat.svg 192 : 12526×3 : 53 play Classic diminished sixth [3] 5
750.00
G Arabic music notation half sharp.svg /A Three quarter flat.svg 215/24215/24 play 15 steps in 24 equal temperament24
755.23
G99 : 6432×11 : 26 play Ninety-ninth harmonic [5] 11
764.92
A 7 rightside up.png [2] 14 : 92×7 : 32 play Septimal minor sixth [3] [5] 7
772.63
G25 : 1652 : 24 play Just augmented fifth [5] [16] 5
775.00
231/48231/48 play 31 steps in 48 equal temperament48
781.79
π  : 2 play Wallis product
782.49
G 7 upside down.png - [2] 11 : 711 : 7 play Undecimal minor sixth, [5] undecimal augmented fifth, [3] Fibonacci numbers 11
789.85
101 : 64101 : 26 play Hundred-first harmonic [5] 101
792.18
A [2] 128 : 8127 : 34 play Pythagorean minor sixth, [3] [5] [6] 81st subharmonic3
798.40
A 29 rightside up.png 7 rightside up.png +203 : 1287×29 : 27 play Two-hundred-third harmonic29
800.00
G/A28/1222/3 play Equal-tempered minor sixth 3, 12M
806.91
G 17 rightside up.png 51 : 323×17 : 25 play Fifty-first harmonic [5] 17
813.69
A [2] 8 : 523 : 5 play Just minor sixth [3] [4] [11] [16] 5
815.64
G++6561 : 409638 : 212 play Pythagorean augmented fifth, [3] [6] Pythagorean 'schismatic' sixth [5] 3
823.80
103 : 64103 : 26 play Hundred-third harmonic [5] 103
825.00
211/16233/48 play 33 steps in 48 equal temperament16, 48
832.18
G 23 rightside up.png +207 : 12832×23 : 27 play Two-hundred-seventh harmonic23
833.09
(51/2+1)/2 φ  : 1 play Golden ratio (833 cents scale)
835.19
A+81 : 5034 : 2×52 play Acute minor sixth [3] 5
840.53
A 13 rightside up.png [2] 13 : 813 : 23 play Tridecimal neutral sixth, [3] overtone sixth, [5] thirteenth harmonic 13
848.83
A 19 rightside up.png 209 : 12811×19 : 27 play Two-hundred-ninth harmonic19
850.00
G Llpd+1 1/2 .svg /A Llpd- 1/2 .svg 217/24217/24 play Equal-tempered neutral sixth 24
852.59
A↓+ [2] 18 : 112×32 : 11 play Undecimal neutral sixth, [3] [5] Zalzal's neutral sixth11
857.09
A 7 rightside up.png +105 : 643×5×7 : 26 play Hundred-fifth harmonic [5] 7
857.14
25/725/7 play 5 steps in 7 equal temperament 7
862.85
A−400 : 24324×52 : 35 play Grave major sixth [3] 5
873.50
A 53 rightside up.png 53 : 3253 : 25 play Fifty-third harmonic [5] 53
875.00
235/48235/48 play 35 steps in 48 equal temperament48
879.86
A↓ 7 upside down.png 128 : 7727 : 7×11 play 77th subharmonic [5] [6] 11
882.40
B Doubleflat.svg −−−32768 : 19683215 : 39 play Pythagorean diminished seventh [3] [6] 3
884.36
A [2] 5 : 35 : 3 play Just major sixth, [3] [4] [5] [11] [16] Bohlen-Pierce sixth, [3] 13-comma meantone major sixth5M
889.76
107 : 64107 : 26 play Hundred-seventh harmonic [5] 107
892.54
B 19 rightside up.png 19 rightside up.png 19 rightside up.png Doubleflat.svg 6859 : 4096193 : 212 play 6859th harmonic19
900.00
A29/1223/4 play Equal-tempered major sixth 4, 12M
902.49
A 19 upside down.png 32 : 1925 : 19 play 19th subharmonic [5] [6] 19
905.87
A+ [2] 27 : 1633 : 24 play Pythagorean major sixth [3] [5] [11] [16] 3
921.82
109 : 64109 : 26 play Hundred-ninth harmonic [5] 109
925.00
237/48237/48 play 37 steps in 48 equal temperament48
925.42
B Doubleflat.svg [2] 128 : 7527 : 3×52 play Just diminished seventh, [16] diminished seventh, [5] [13] 75th subharmonic5
925.79
A 23 rightside up.png 19 rightside up.png +437 : 25619×23 : 28 play Four-hundred-thirty-seventh harmonic23
933.13
A 7 upside down.png [2] 12 : 722×3 : 7 play Septimal major sixth [3] [4] [5] 7
937.63
A55 : 325×11 : 25 play Fifty-fifth harmonic [5] [20] 11
950.00
A Arabic music notation half sharp.svg /B Three quarter flat.svg 219/24219/24 play 19 steps in 24 equal temperament24
953.30
A 37 rightside up.png +111 : 643×37 : 26 play Hundred-eleventh harmonic [5] 37
955.03
A [2] 125 : 7253 : 23×32 play Just augmented sixth [5] 5
957.21
(3 : 2)15/11315/11 : 215/11 play 15 steps in Beta scale 18.75
960.00
24/524/5 play 4 steps in 5 equal temperament 5
968.83
B 7 rightside up.png [2] 7 : 47 : 22 play Septimal minor seventh, [4] [5] [11] harmonic seventh, [3] [11] augmented sixth[ citation needed ]7
975.00
213/16239/48 play 39 steps in 48 equal temperament16, 48
976.54
A+ [2] 225 : 12832×52 : 27 play Just augmented sixth [16] 5
984.21
113 : 64113 : 26 play Hundred-thirteenth harmonic [5] 113
996.09
B [2] 16 : 924 : 32 play Pythagorean minor seventh, [3] Small just minor seventh, [4] lesser minor seventh, [16] just minor seventh, [11] Pythagorean small minor seventh [5] 3
999.47
B 19 rightside up.png 57 : 323×19 : 25 play Fifty-seventh harmonic [5] 19
1000.00
A/B210/1225/6 play Equal-tempered minor seventh 6, 12M
1014.59
A 23 rightside up.png +115 : 645×23 : 26 play Hundred-fifteenth harmonic [5] 23
1017.60
B [2] 9 : 532 : 5 play Greater just minor seventh, [16] large just minor seventh, [4] [5] Bohlen-Pierce seventh [3] 5
1019.55
A+++59049 : 32768310 : 215 play Pythagorean augmented sixth [3] [6] 3
1025.00
241/48241/48 play 41 steps in 48 equal temperament48
1028.57
26/726/7 play 6 steps in 7 equal temperament 7
1029.58
B 29 rightside up.png 29 : 1629 : 24 play Twenty-ninth harmonic, [5] minor seventh[ citation needed ]29
1035.00
B↓ [2] 20 : 1122×5 : 11 play Lesser undecimal neutral seventh, large minor seventh [3] 11
1039.10
B+729 : 40036 : 24×52 play Acute minor seventh [3] 5
1044.44
B 13 rightside up.png 117 : 6432×13 : 26 play Hundred-seventeenth harmonic [5] 13
1044.86
B 7 upside down.png -64 : 3526 : 5×7 play 35th subharmonic, [5] septimal neutral seventh [6] 7
1049.36
B [2] 11 : 611 : 2×3 play 214-tone or Undecimal neutral seventh, [3] undecimal 'median' seventh [5] 11
1050.00
A Llpd+1 1/2 .svg /B Llpd- 1/2 .svg 221/2427/8 play Equal-tempered neutral seventh 8, 24
1059.17
59 : 3259 : 25 play Fifty-ninth harmonic [5] 59
1066.76
B−50 : 272×52 : 33 play Grave major seventh [3] 5
1071.70
B 13 rightside up.png 7 upside down.png -13 : 713 : 7 play Tridecimal neutral seventh [21] 13
1073.78
B 7 rightside up.png 17 rightside up.png 119 : 647×17 : 26 play Hundred-nineteenth harmonic [5] 17
1075.00
243/48243/48 play 43 steps in 48 equal temperament48
1086.31
C′−−4096 : 2187212 : 37 play Pythagorean diminished octave [3] [6] 3
1088.27
B [2] 15 : 83×5 : 23 play Just major seventh, [3] [5] [11] [16] small just major seventh, [4] 16-comma meantone major seventh5
1095.04
C 17 upside down.png 32 : 1725 : 17 play 17th subharmonic [5] [6] 17
1100.00
B211/12211/12 play Equal-tempered major seventh 12M
1102.64
B-121 : 64112 : 26 play Hundred-twenty-first harmonic [5] 11
1107.82
C′256 : 13528 : 33×5 play Octave − major chroma, [3] 135th subharmonic, narrow diminished octave[ citation needed ]5
1109.78
B+ [2] 243 : 12835 : 27 play Pythagorean major seventh [3] [5] [6] [11] 3
1116.88
61 : 3261 : 25 play Sixty-first harmonic [5] 61
1125.00
215/16245/48 play 45 steps in 48 equal temperament16, 48
1129.33
C′ [2] 48 : 2524×3 : 52 play Classic diminished octave, [3] [6] large just major seventh [4] 5
1131.02
B 41 rightside up.png 123 : 643×41 : 26 play Hundred-twenty-third harmonic [5] 41
1137.04
B 7 upside down.png 27 : 1433 : 2×7 play Septimal major seventh [5] 7
1138.04
C 19 rightside up.png 13 rightside up.png 247 : 12813×19 : 27 play Two-hundred-forty-seventh harmonic19
1145.04
B 31 rightside up.png 31 : 1631 : 24 play Thirty-first harmonic, [5] augmented seventh[ citation needed ]31
1146.73
C↓64 : 3326 : 3×11 play 33rd subharmonic [6] 11
1150.00
B Arabic music notation half sharp.svg /C Llpd- 1/2 .svg 223/24223/24 play 23 steps in 24 equal temperament24
1151.23
C 7 rightside up.png 35 : 185×7 : 2×32 play Septimal supermajor seventh, septimal quarter tone inverted 7
1158.94
B [2] 125 : 6453 : 26 play Just augmented seventh, [5] 125th harmonic5
1172.74
C 7 rightside up.png +63 : 3232×7 : 25 play Sixty-third harmonic [5] 7
1175.00
247/48247/48 play 47 steps in 48 equal temperament48
1178.49
C′−160 : 8125×5 : 34 play Octave − syntonic comma, [3] semi-diminished octave[ citation needed ]5
1179.59
B 23 rightside up.png 253 : 12811×23 : 27 play Two-hundred-fifty-third harmonic [5] 23
1186.42
127 : 64127 : 26 play Hundred-twenty-seventh harmonic [5] 127
1200.00
C′2 : 12 : 1 play Octave [3] [11] or diapason [4] 1, 123MS

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Equal temperament</span> Musical tuning system with constant ratios between notes

An equal temperament is a musical temperament or tuning system that approximates just intervals by dividing an octave into steps such that the ratio of the frequencies of any adjacent pair of notes is the same. This system yields pitch steps perceived as equal in size, due to the logarithmic changes in pitch frequency.

<span class="mw-page-title-main">Just intonation</span> Musical tuning based on pure intervals

In music, just intonation or pure intonation is the tuning of musical intervals as whole number ratios of frequencies. An interval tuned in this way is said to be pure, and is called a just interval. Just intervals consist of tones from a single harmonic series of an implied fundamental. For example, in the diagram, if the notes G3 and C4 are tuned as members of the harmonic series of the lowest C, their frequencies will be 3 and 4 times the fundamental frequency. The interval ratio between C4 and G3 is therefore 4:3, a just fourth.

<span class="mw-page-title-main">Musical tuning</span> Terms for tuning an instrument and a systems of pitches

In music, there are two common meanings for tuning:

<span class="mw-page-title-main">Pythagorean tuning</span> Method of tuning a musical instrument

Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are determined by choosing a sequence of fifths which are "pure" or perfect, with ratio . This is chosen because it is the next harmonic of a vibrating string, after the octave, and hence is the next most consonant "pure" interval, and the easiest to tune by ear. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions." Alternatively, it can be described as the tuning of the syntonic temperament in which the generator is the ratio 3:2, which is ≈ 702 cents wide.

Meantone temperaments are musical temperaments; that is, a variety of tuning systems constructed, similarly to Pythagorean tuning, as a sequence of equal fifths, both rising and descending, scaled to remain within the same octave. But rather than using perfect fifths, consisting of frequency ratios of value , these are tempered by a suitable factor that narrows them to ratios that are slightly less than , in order to bring the major or minor thirds closer to the just intonation ratio of or , respectively. A regular temperament is one in which all the fifths are chosen to be of the same size.

<span class="mw-page-title-main">Syntonic comma</span> Musical interval

In music theory, the syntonic comma, also known as the chromatic diesis, the Didymean comma, the Ptolemaic comma, or the diatonic comma is a small comma type interval between two musical notes, equal to the frequency ratio 81:80 (= 1.0125). Two notes that differ by this interval would sound different from each other even to untrained ears, but would be close enough that they would be more likely interpreted as out-of-tune versions of the same note than as different notes. The comma is also referred to as a Didymean comma because it is the amount by which Didymus corrected the Pythagorean major third to a just major third.

<span class="mw-page-title-main">Wolf interval</span> Dissonant musical interval

In music theory, the wolf fifth is a particularly dissonant musical interval spanning seven semitones. Strictly, the term refers to an interval produced by a specific tuning system, widely used in the sixteenth and seventeenth centuries: the quarter-comma meantone temperament. More broadly, it is also used to refer to similar intervals produced by other tuning systems, including Pythagorean and most meantone temperaments.

<span class="mw-page-title-main">Semitone</span> Musical interval

A semitone, also called a minor second, half step, or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale, visually seen on a keyboard as the distance between two keys that are adjacent to each other. For example, C is adjacent to C; the interval between them is a semitone.

<span class="mw-page-title-main">Minor third</span> Musical interval

In music theory, a minor third is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions. The minor third is one of two commonly occurring thirds. It is called minor because it is the smaller of the two: the major third spans an additional semitone. For example, the interval from A to C is a minor third, as the note C lies three semitones above A. Coincidentally, there are three staff positions from A to C. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones. The minor third is a skip melodically.

<span class="mw-page-title-main">Regular temperament</span>

A regular temperament is any tempered system of musical tuning such that each frequency ratio is obtainable as a product of powers of a finite number of generators, or generating frequency ratios. For instance, in 12-TET, the system of music most commonly used in the Western world, the generator is a tempered fifth, which is the basis behind the circle of fifths.

A schismatic temperament is a musical tuning system that results from tempering the schisma of 32805:32768 to a unison. It is also called the schismic temperament, Helmholtz temperament, or quasi-Pythagorean temperament.

<span class="mw-page-title-main">Comma (music)</span> Very small interval arising from discrepancies in tuning

In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Strictly speaking, there are only two kinds of comma, the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F tuned using the D-based Pythagorean tuning system, and another F tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B and A are both approximated by the same interval although they are a septimal kleisma apart.

12 equal temperament (12-ET) is the musical system that divides the octave into 12 parts, all of which are equally tempered on a logarithmic scale, with a ratio equal to the 12th root of 2. That resulting smallest interval, 112 the width of an octave, is called a semitone or half step.

<span class="mw-page-title-main">53 equal temperament</span> Musical tuning system with 53 pitches equally-spaced on a logarithmic scale

In music, 53 equal temperament, called 53 TET, 53 EDO, or 53 ET, is the tempered scale derived by dividing the octave into 53 equal steps. Each step represents a frequency ratio of 2153, or 22.6415 cents, an interval sometimes called the Holdrian comma.

<span class="mw-page-title-main">Pythagorean interval</span> Musical interval

In musical tuning theory, a Pythagorean interval is a musical interval with a frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 31/ 21) and the perfect fourth with ratio 4/3 (equivalent to 22/ 31) are Pythagorean intervals.

<span class="mw-page-title-main">Musical temperament</span> Musical tuning system

In musical tuning, a temperament is a tuning system that slightly compromises the pure intervals of just intonation to meet other requirements. Most modern Western musical instruments are tuned in the equal temperament system. Tempering is the process of altering the size of an interval by making it narrower or wider than pure. "Any plan that describes the adjustments to the sizes of some or all of the twelve fifth intervals in the circle of fifths so that they accommodate pure octaves and produce certain sizes of major thirds is called a temperament." Temperament is especially important for keyboard instruments, which typically allow a player to play only the pitches assigned to the various keys, and lack any way to alter pitch of a note in performance. Historically, the use of just intonation, Pythagorean tuning and meantone temperament meant that such instruments could sound "in tune" in one key, or some keys, but would then have more dissonance in other keys.

<span class="mw-page-title-main">Harmonic seventh</span> Musical interval

The harmonic seventh interval, also known as the septimal minor seventh, or subminor seventh, is one with an exact 7:4 ratio (about 969 cents). This is somewhat narrower than and is, "particularly sweet", "sweeter in quality" than an "ordinary" just minor seventh, which has an intonation ratio of 9:5 (about 1018 cents).

In music, 41 equal temperament, abbreviated 41-TET, 41-EDO, or 41-ET, is the tempered scale derived by dividing the octave into 41 equally sized steps. Each step represents a frequency ratio of 21/41, or 29.27 cents, an interval close in size to the septimal comma. 41-ET can be seen as a tuning of the schismatic, magic and miracle temperaments. It is the second smallest equal temperament, after 29-ET, whose perfect fifth is closer to just intonation than that of 12-ET. In other words, is a better approximation to the ratio than either or .

<span class="mw-page-title-main">Regular diatonic tuning</span>

A regular diatonic tuning is any musical scale consisting of "tones" (T) and "semitones" (S) arranged in any rotation of the sequence TTSTTTS which adds up to the octave with all the T's being the same size and all the S's the being the same size, with the 'S's being smaller than the 'T's. In such a tuning, then the notes are connected together in a chain of seven fifths, all the same size which makes it a Linear temperament with the tempered fifth as a generator.

<span class="mw-page-title-main">Five-limit tuning</span>

Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2−3·31·51 = 15/8.

References

  1. 1 2 Fox, Christopher (2003). "Microtones and Microtonalities", Contemporary Music Review, v. 22, pt. 1–2. (Abingdon, Oxfordshire, UK: Routledge): p. 13.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 Fonville, John. 1991. "Ben Johnston's Extended Just Intonation: A Guide for Interpreters". Perspectives of New Music 29, no. 2 (Summer): 106–137.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 "List of intervals", Huygens-Fokker Foundation . The Foundation uses "classic" to indicate "just" or leaves off any adjective, as in "major sixth".
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Partch, Harry (1979). Genesis of a Music . pp. 68–69. ISBN   978-0-306-80106-8.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 "Anatomy of an Octave", Kyle Gann (1998). Gann leaves off "just" but includes "5-limit". He uses "median" for "neutral".
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Haluška, Ján (2003). The Mathematical Theory of Tone Systems, pp. xxv–xxix. ISBN   978-0-8247-4714-5.
  7. Ellis, Alexander J.; Hipkins, Alfred J. (1884). "Tonometrical Observations on Some Existing Non-Harmonic Musical Scales". Proceedings of the Royal Society of London . 37 (232–234): 368–385. doi: 10.1098/rspl.1884.0041 . JSTOR   114325. S2CID   122407786.
  8. "Logarithmic Interval Measures", Huygens-Fokker Foundation. Accessed 2015-06-06.
  9. "Orwell Temperaments", Xenharmony.org.
  10. 1 2 Partch 1979, p. 70
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Alexander John Ellis (March 1885). On the musical scales of various nations , p. 488. Journal of the Society of Arts , vol. XXXII, no. 1688
  12. William Smythe Babcock Mathews (1895). Pronouncing Dictionary and Condensed Encyclopedia of Musical Terms, p. 13. ISBN   1-112-44188-3.
  13. 1 2 3 4 5 6 Anger, Joseph Humfrey (1912). A Treatise on Harmony, with Exercises, Volume 3 , pp. xiv–xv. W. Tyrrell.
  14. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hermann Ludwig F. von Helmholtz (Alexander John Ellis, trans.) (1875). "Additions by the translator", On the sensations of tone as a physiological basis for the theory of music, p. 644. [ISBN unspecified]
  15. A. R. Meuss (2004). Intervals, Scales, Tones and the Concert Pitch C. Temple Lodge Publishing. p. 15. ISBN   1902636465.
  16. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Paul, Oscar (1885). A Manual of Harmony for Use in Music-schools and Seminaries and for Self-instruction , p. 165. Theodore Baker, trans. G. Schirmer. Paul uses "natural" for "just".
  17. 1 2 "13th-harmonic", 31et.com.
  18. Brabner, John H. F. (1884). The National Encyclopaedia , vol. 13, p. 182. London. [ISBN unspecified]
  19. Sabat, Marc and von Schweinitz, Wolfgang (2004). "The Extended Helmholtz-Ellis JI Pitch Notation" [PDF], NewMusicBox . Accessed: 15 March 2014.
  20. Hermann L. F. von Helmholtz (2007). On the Sensations of Tone , p. 456. ISBN   978-1-60206-639-7.
  21. "Gallery of Just Intervals", Xenharmonic Wiki.