Substitution tiling

Last updated

In geometry, a tile substitution is a method for constructing highly ordered tilings. Most importantly, some tile substitutions generate aperiodic tilings, which are tilings whose prototiles do not admit any tiling with translational symmetry. The most famous of these are the Penrose tilings. Substitution tilings are special cases of finite subdivision rules, which do not require the tiles to be geometrically rigid.

Contents

Introduction

A tile substitution is described by a set of prototiles (tile shapes) , an expanding map and a dissection rule showing how to dissect the expanded prototiles to form copies of some prototiles . Intuitively, higher and higher iterations of tile substitution produce a tiling of the plane called a substitution tiling. Some substitution tilings are periodic, defined as having translational symmetry. Every substitution tiling (up to mild conditions) can be "enforced by matching rules"—that is, there exist a set of marked tiles that can only form exactly the substitution tilings generated by the system. The tilings by these marked tiles are necessarily aperiodic. [1] [2]

A simple example that produces a periodic tiling has only one prototile, namely a square:

Subst-square.png

By iterating this tile substitution, larger and larger regions of the plane are covered with a square grid. A more sophisticated example with two prototiles is shown below, with the two steps of blowing up and dissecting merged into one step.

House substitution tiling.svg

One may intuitively get an idea how this procedure yields a substitution tiling of the entire plane. A mathematically rigorous definition is given below. Substitution tilings are notably useful as ways of defining aperiodic tilings, which are objects of interest in many fields of mathematics, including automata theory, combinatorics, discrete geometry, dynamical systems, group theory, harmonic analysis and number theory, as well as crystallography and chemistry. In particular, the celebrated Penrose tiling is an example of an aperiodic substitution tiling.

History

In 1973 and 1974, Roger Penrose discovered a family of aperiodic tilings, now called Penrose tilings. The first description was given in terms of 'matching rules' treating the prototiles as jigsaw puzzle pieces. The proof that copies of these prototiles can be put together to form a tiling of the plane, but cannot do so periodically, uses a construction that can be cast as a substitution tiling of the prototiles. In 1977 Robert Ammann discovered a number of sets of aperiodic prototiles, i.e., prototiles with matching rules forcing nonperiodic tilings; in particular, he rediscovered Penrose's first example. This work gave an impact to scientists working in crystallography, eventually leading to the discovery of quasicrystals. In turn, the interest in quasicrystals led to the discovery of several well-ordered aperiodic tilings. Many of them can be easily described as substitution tilings.

Mathematical definition

We will consider regions in that are well-behaved, in the sense that a region is a nonempty compact subset that is the closure of its interior.

We take a set of regions as prototiles. A placement of a prototile is a pair where is an isometry of . The image is called the placement's region. A tiling T is a set of prototile placements whose regions have pairwise disjoint interiors. We say that the tiling T is a tiling of W where W is the union of the regions of the placements in T.

A tile substitution is often loosely defined in the literature. A precise definition is as follows. [3]

A tile substitution with respect to the prototiles P is a pair , where is a linear map, all of whose eigenvalues are larger than one in modulus, together with a substitution rule that maps each to a tiling of . The substitution rule induces a map from any tiling T of a region W to a tiling of , defined by

Note, that the prototiles can be deduced from the tile substitution. Therefore it is not necessary to include them in the tile substitution . [4]

Every tiling of , where any finite part of it is congruent to a subset of some is called a substitution tiling (for the tile substitution ).


See also

Related Research Articles

<span class="mw-page-title-main">Golden ratio</span> Ratio between two quantities whose sum is at the same ratio to the larger one

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with ,

<span class="mw-page-title-main">Quaternion</span> Noncommutative extension of the real numbers

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of quaternions is noncommutative.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.

<span class="mw-page-title-main">Complex conjugate</span> Fundamental operation on complex numbers

In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, the complex conjugate of is equal to The complex conjugate of is often denoted as or .

In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces, and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

In mathematics, the total variation identifies several slightly different concepts, related to the structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector.

<span class="mw-page-title-main">Aperiodic tiling</span> Specific form of plane tiling in mathematics

An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types is aperiodic if copies of these tiles can form only non-periodic tilings. The Penrose tilings are the best-known examples of aperiodic tilings.

String diagrams are a formal graphical language for representing morphisms in monoidal categories, or more generally 2-cells in 2-categories. They are a prominent tool in applied category theory. When interpreted in the monoidal category of vector spaces and linear maps with the tensor product, string diagrams are called tensor networks or Penrose graphical notation. This has led to the development of categorical quantum mechanics where the axioms of quantum theory are expressed in the language of monoidal categories.

In mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping.

<span class="mw-page-title-main">Ammann–Beenker tiling</span> Non-periodic tiling of the plane

In geometry, an Ammann–Beenker tiling is a nonperiodic tiling which can be generated either by an aperiodic set of prototiles as done by Robert Ammann in the 1970s, or by the cut-and-project method as done independently by F. P. M. Beenker. They are one of the five sets of tilings discovered by Ammann and described in Tilings and Patterns.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes's theorem, also known as Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on R3. Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical Stokes' theorem can be stated in one sentence: The line integral of a vector field over a loop is equal to the flux of its curl through the enclosed surface.

<span class="mw-page-title-main">Penrose tiling</span> Non-periodic tiling of the plane

A Penrose tiling is an example of an aperiodic tiling. Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and aperiodic means that shifting any tiling with these shapes by any finite distance, without rotation, cannot produce the same tiling. However, despite their lack of translational symmetry, Penrose tilings may have both reflection symmetry and fivefold rotational symmetry. Penrose tilings are named after mathematician and physicist Roger Penrose, who investigated them in the 1970s.

<span class="mw-page-title-main">Objective stress rate</span>

In continuum mechanics, objective stress rates are time derivatives of stress that do not depend on the frame of reference. Many constitutive equations are designed in the form of a relation between a stress-rate and a strain-rate. The mechanical response of a material should not depend on the frame of reference. In other words, material constitutive equations should be frame-indifferent (objective). If the stress and strain measures are material quantities then objectivity is automatically satisfied. However, if the quantities are spatial, then the objectivity of the stress-rate is not guaranteed even if the strain-rate is objective.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

<span class="mw-page-title-main">Aperiodic set of prototiles</span>

A set of prototiles is aperiodic if copies of the prototiles can be assembled to create tilings, such that all possible tessellation patterns are non-periodic. The aperiodicity referred to is a property of the particular set of prototiles; the various resulting tilings themselves are just non-periodic.

In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles, that is, a shape that can tessellate space, but only in a nonperiodic way. Such a shape is called an "einstein", a play on the German words ein Stein, meaning one tile. Depending on the particular definitions of nonperiodicity and the specifications of what sets may qualify as tiles and what types of matching rules are permitted, the problem is either open or solved. The einstein problem can be seen as a natural extension of the second part of Hilbert's eighteenth problem, which asks for a single polyhedron that tiles Euclidean 3-space, but such that no tessellation by this polyhedron is isohedral. Such anisohedral tiles were found by Karl Reinhardt in 1928, but these anisohedral tiles all tile space periodically.

<span class="mw-page-title-main">Tübingen triangle</span> Non-periodic tiling of the plane

The Tübingen triangle is, apart from the Penrose rhomb tilings and their variations, a classical candidate to model 5-fold quasicrystals. The inflation factor is – as in the Penrose case – the golden mean,

Computational anatomy is an interdisciplinary field of biology focused on quantitative investigation and modelling of anatomical shapes variability. It involves the development and application of mathematical, statistical and data-analytical methods for modelling and simulation of biological structures.

References

  1. C. Goodman-Strauss, Matching Rules and Substitution Tilings, Annals Math., 147 (1998), 181-223.
  2. Th. Fernique and N. Ollinger, Combinatorial substitutions and sofic tilings, Journees Automates Cellulaires 2010, J. Kari ed., TUCS Lecture Notes 13 (2010), 100-110.
  3. D. Frettlöh, Duality of Model Sets Generated by Substitutions, Romanian Journal of Pure and Applied Math. 50, 2005
  4. A. Vince, Digit Tiling of Euclidean Space, in: Directions in Mathematical Quasicrystals, eds: M. Baake, R.V. Moody, AMS, 2000

Further reading