List of Euclidean uniform tilings

Last updated

An example of uniform tiling in the Archeological Museum of Seville, Sevilla, Spain: rhombitrihexagonal tiling Semi-regular-floor-3464.JPG
An example of uniform tiling in the Archeological Museum of Seville, Sevilla, Spain: rhombitrihexagonal tiling
Uniform tilings and their duals drawn by Max Bruckner in Vielecke und Vielflache (1900) Bruckner Vielflache Fig. 96b - 98.jpg
Uniform tilings and their duals drawn by Max Brückner in Vielecke und Vielflache (1900)

This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings.

Contents

There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their duals, each made from one type of irregular face.

John Conway called these uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra.

Uniform tilings are listed by their vertex configuration, the sequence of faces that exist on each vertex. For example 4.8.8 means one square and two octagons on a vertex.

These 11 uniform tilings have 32 different uniform colorings . A uniform coloring allows identical sided polygons at a vertex to be colored differently, while still maintaining vertex-uniformity and transformational congruence between vertices. (Note: Some of the tiling images shown below are not color-uniform.)

In addition to the 11 convex uniform tilings, there are also 14 known nonconvex tilings, using star polygons, and reverse orientation vertex configurations. A further 28 uniform tilings are known using apeirogons. If zigzags are also allowed, there are 23 more known uniform tilings and 10 more known families depending on a parameter: in 8 cases the parameter is continuous, and in the other 2 it is discrete. The set is not known to be complete.

Laves tilings

In the 1987 book, Tilings and patterns , Branko Grünbaum calls the vertex-uniform tilings Archimedean, in parallel to the Archimedean solids. Their dual tilings are called Laves tilings in honor of crystallographer Fritz Laves. [1] [2] They're also called Shubnikov–Laves tilings after Aleksei Shubnikov. [3] John Conway called the uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra.

The Laves tilings have vertices at the centers of the regular polygons, and edges connecting centers of regular polygons that share an edge. The tiles of the Laves tilings are called planigons . This includes the 3 regular tiles (triangle, square and hexagon) and 8 irregular ones. [4] Each vertex has edges evenly spaced around it. Three dimensional analogues of the planigons are called stereohedrons.

These dual tilings are listed by their face configuration, the number of faces at each vertex of a face. For example V4.8.8 means isosceles triangle tiles with one corner with four triangles, and two corners containing eight triangles. The orientations of the vertex planigons (up to D12) are consistent with the vertex diagrams in the below sections.

Eleven planigons
TrianglesQuadrilateralsPentagonsHexagon
Tiling 6 dual face.svg
V63
CDel node.pngCDel split1.pngCDel branch.png
Tiling truncated 4a dual face.svg
V4.82
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Tiling great rhombi 3-6 dual face.svg
V4.6.12
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Tiling truncated 6 dual face.svg
V3.122
CDel 2.png
Tiling 4a dual face.svg
V44
CDel labelinfin.pngCDel branch.pngCDel 2.pngCDel branch.pngCDel labelinfin.png
Tiling 3-6 dual face.svg
V(3.6)2
CDel 2.png
Tiling small rhombi 3-6 dual face.svg
V3.4.6.4
CDel 2.png
Tiling snub 4-4 left dual face.svg
V32.4.3.4
CDel 2.png
Tiling snub 3-6 left dual face.svg
V34.6
CDel 2.png
Tiling elongated 3 dual face.svg
V33.42
CDel 2.png
Tiling 3 dual face.svg
V36
CDel 2.png

Convex uniform tilings of the Euclidean plane

All reflectional forms can be made by Wythoff constructions, represented by Wythoff symbols, or Coxeter-Dynkin diagrams, each operating upon one of three Schwarz triangle (4,4,2), (6,3,2), or (3,3,3), with symmetry represented by Coxeter groups: [4,4], [6,3], or [3[3]]. Alternated forms such as the snub can also be represented by special markups within each system. Only one uniform tiling can't be constructed by a Wythoff process, but can be made by an elongation of the triangular tiling. An orthogonal mirror construction [,2,] also exists, seen as two sets of parallel mirrors making a rectangular fundamental domain. If the domain is square, this symmetry can be doubled by a diagonal mirror into the [4,4] family.

Families:

The [4,4] group family

Uniform tilings
(Platonic and Archimedean)
Vertex figure and dual face
Wythoff symbol(s)
Symmetry group
Coxeter diagram(s)
Dual-uniform tilings
(called Laves or Catalan tilings)
Tiling 4a simple.svg
Square tiling (quadrille)
Tiling 4a vertfig.svg Tiling 4a dual face.svg
4.4.4.4 (or 44)
4 | 2 4
p4m, [4,4], (*442)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node 1.png
Tiling 4b simple.svg
self-dual (quadrille)
Tiling truncated 4a simple.svg
Truncated square tiling (truncated quadrille)
Tiling truncated 4a vertfig.svg Tiling truncated 4a dual face.svg
4.8.8
2 | 4 4
4 4 2 |
p4m, [4,4], (*442)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png or CDel node 1.pngCDel split1-44.pngCDel nodes 11.png
Tiling truncated 4a dual simple.svg
Tetrakis square tiling (kisquadrille)
Tiling snub 4-4 left simple.svg
Snub square tiling (snub quadrille)
Tiling snub 4-4 left vertfig.svg Tiling snub 4-4 left dual face.svg
3.3.4.3.4
| 4 4 2
p4g, [4+,4], (4*2)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png or CDel node h.pngCDel split1-44.pngCDel nodes hh.png
Tiling snub 4-4 left dual simple.svg
Cairo pentagonal tiling (4-fold pentille)

The [6,3] group family

Platonic and Archimedean tilings Vertex figure and dual face
Wythoff symbol(s)
Symmetry group
Coxeter diagram(s)
Dual Laves tilings
Tiling 6 simple.svg
Hexagonal tiling (hextille)
Tiling 6 vertfig.svg Tiling 6 dual face.svg
6.6.6 (or 63)
3 | 6 2
2 6 | 3
3 3 3 |
p6m, [6,3], (*632)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Tiling 3 simple.svg
Triangular tiling (deltille)
Tiling 3-6 simple.svg
Trihexagonal tiling (hexadeltille)
Tiling 3-6 vertfig.svg Tiling 3-6 dual face.svg
(3.6)2
2 | 6 3
3 3 | 3
p6m, [6,3], (*632)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel branch 10ru.pngCDel split2.pngCDel node 1.png = CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Tiling 3-6 dual simple.svg
Rhombille tiling (rhombille)
Tiling truncated 6 simple.svg
Truncated hexagonal tiling (truncated hextille)
Tiling truncated 6 vertfig.svg Tiling truncated 6 dual face.svg
3.12.12
2 3 | 6
p6m, [6,3], (*632)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Tiling truncated 6 dual simple.svg
Triakis triangular tiling (kisdeltille)
Tiling 3 simple.svg
Triangular tiling (deltille)
Tiling 3 vertfig.svg Tiling 3 dual face.svg
3.3.3.3.3.3 (or 36)
6 | 3 2
3 | 3 3
| 3 3 3
p6m, [6,3], (*632)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node 1.pngCDel split1.pngCDel branch.png = CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel split1.pngCDel branch hh.png
Tiling 6 simple.svg
Hexagonal tiling (hextille)
Tiling small rhombi 3-6 simple.svg
Rhombitrihexagonal tiling (rhombihexadeltille)
Tiling small rhombi 3-6 vertfig.svg Tiling small rhombi 3-6 dual face.svg
3.4.6.4
3 | 6 2
p6m, [6,3], (*632)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Tiling small rhombi 3-6 dual simple.svg
Deltoidal trihexagonal tiling (tetrille)
Tiling great rhombi 3-6 simple.svg
Truncated trihexagonal tiling (truncated hexadeltille)
Tiling great rhombi 3-6 vertfig.svg Tiling great rhombi 3-6 dual face.svg
4.6.12
2 6 3 |
p6m, [6,3], (*632)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Tiling great rhombi 3-6 dual simple.svg
Kisrhombille tiling (kisrhombille)
Tiling snub 3-6 left simple.svg
Snub trihexagonal tiling (snub hextille)
Tiling snub 3-6 left vertfig.svg Tiling snub 3-6 left dual face.svg
3.3.3.3.6
| 6 3 2
p6, [6,3]+, (632)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Tiling snub 3-6 left dual simple.svg
Floret pentagonal tiling (6-fold pentille)

Non-Wythoffian uniform tiling

Platonic and Archimedean tilings Vertex figure and dual face
Wythoff symbol(s)
Symmetry group
Coxeter diagram
Dual Laves tilings
Tiling elongated 3 simple.svg
Elongated triangular tiling (isosnub quadrille)
Tiling elongated 3 vertfig.svg Tiling elongated 3 dual face.svg
3.3.3.4.4
2 | 2 (2 2)
cmm, [∞,2+,∞], (2*22)
CDel node.pngCDel infin.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.png
CDel node h.pngCDel infin.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.png
Tiling elongated 3 dual simple.svg
Prismatic pentagonal tiling (iso(4-)pentille)

Uniform colorings

There are a total of 32 uniform colorings of the 11 uniform tilings:

  1. Triangular tiling – 9 uniform colorings, 4 wythoffian, 5 nonwythoffian
    • Uniform tiling 63-t2.svg   Uniform tiling 333-t1.svg   Uniform tiling 333-snub.svg   Uniform tiling 63-h12.svg   Uniform triangular tiling 111222.svg   Uniform triangular tiling 112122.png   Uniform triangular tiling 111112.png   Uniform triangular tiling 111212.png   Uniform triangular tiling 111213.png  
  2. Square tiling – 9 colorings: 7 wythoffian, 2 nonwythoffian
    • Square tiling uniform coloring 1.svg   Square tiling uniform coloring 2.png   Square tiling uniform coloring 7.png   Square tiling uniform coloring 8.png   Square tiling uniform coloring 3.png   Square tiling uniform coloring 6.png   Square tiling uniform coloring 4.png   Square tiling uniform coloring 5.png   Square tiling uniform coloring 9.png  
  3. Hexagonal tiling – 3 colorings, all wythoffian
    • Uniform tiling 63-t0.svg   Uniform tiling 63-t12.svg   Uniform tiling 333-t012.svg  
  4. Trihexagonal tiling – 2 colorings, both wythoffian
    • Uniform tiling 63-t1.svg   Uniform polyhedron-63-t1-1.svg  
  5. Snub square tiling – 2 colorings, both alternated wythoffian
    • Uniform tiling 44-h01.svg   Uniform tiling 44-snub.svg  
  6. Truncated square tiling – 2 colorings, both wythoffian
    • Uniform tiling 44-t12.svg   Uniform tiling 44-t012.svg  
  7. Truncated hexagonal tiling – 1 coloring, wythoffian
    • Uniform tiling 63-t01.svg  
  8. Rhombitrihexagonal tiling – 1 coloring, wythoffian
    • Uniform tiling 63-t02.svg  
  9. Truncated trihexagonal tiling – 1 coloring, wythoffian
    • Uniform tiling 63-t012.svg  
  10. Snub hexagonal tiling – 1 coloring, alternated wythoffian
    • Uniform tiling 63-snub.svg  
  11. Elongated triangular tiling – 1 coloring, nonwythoffian
    • Elongated triangular tiling 1.png  

See also

References

  1. Grünbaum, Branko; Shephard, G. C. (1987). Tilings and Patterns . W. H. Freeman and Company. pp.  59, 96. ISBN   0-7167-1193-1.
  2. Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (April 18, 2008). "Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Euclidean Plane Tessellations". The Symmetries of Things. A K Peters / CRC Press. p. 288. ISBN   978-1-56881-220-5. Archived from the original on September 19, 2010.
  3. Encyclopaedia of Mathematics: Orbit - Rayleigh Equation, 1991
  4. Ivanov, A. B. (2001) [1994], "Planigon", Encyclopedia of Mathematics , EMS Press

Further reading