Percolation threshold

Last updated

The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity ( percolation ) first occurs. [1]

Contents

Percolation models

The most common percolation model is to take a regular lattice, like a square lattice, and make it into a random network by randomly "occupying" sites (vertices) or bonds (edges) with a statistically independent probability p. At a critical threshold pc, large clusters and long-range connectivity first appear, and this is called the percolation threshold. Depending on the method for obtaining the random network, one distinguishes between the site percolation threshold and the bond percolation threshold. More general systems have several probabilities p1, p2, etc., and the transition is characterized by a critical surface or manifold. One can also consider continuum systems, such as overlapping disks and spheres placed randomly, or the negative space (Swiss-cheese models).

To understand the threshold, you can consider a quantity such as the probability that there is a continuous path from one boundary to another along occupied sites or bonds—that is, within a single cluster. For example, one can consider a square system, and ask for the probability P that there is a path from the top boundary to the bottom boundary. As a function of the occupation probability p, one finds a sigmoidal plot that goes from P=0 at p=0 to P=1 at p=1. The larger the square is compared to the lattice spacing, the sharper the transition will be. When the system size goes to infinity, P(p) will be a step function at the threshold value pc. For finite large systems, P(pc) is a constant whose value depends upon the shape of the system; for the square system discussed above, P(pc)=12 exactly for any lattice by a simple symmetry argument.

There are other signatures of the critical threshold. For example, the size distribution (number of clusters of size s) drops off as a power-law for large s at the threshold, ns(pc) ~ s−τ, where τ is a dimension-dependent percolation critical exponents. For an infinite system, the critical threshold corresponds to the first point (as p increases) where the size of the clusters become infinite.

In the systems described so far, it has been assumed that the occupation of a site or bond is completely random—this is the so-called Bernoulli percolation. For a continuum system, random occupancy corresponds to the points being placed by a Poisson process. Further variations involve correlated percolation, such as percolation clusters related to Ising and Potts models of ferromagnets, in which the bonds are put down by the Fortuin–Kasteleyn method. [2] In bootstrap or k-sat percolation, sites and/or bonds are first occupied and then successively culled from a system if a site does not have at least k neighbors. Another important model of percolation, in a different universality class altogether, is directed percolation, where connectivity along a bond depends upon the direction of the flow. Another variation of recent interest is Explosive Percolation, whose thresholds are listed on that page.

Over the last several decades, a tremendous amount of work has gone into finding exact and approximate values of the percolation thresholds for a variety of these systems. Exact thresholds are only known for certain two-dimensional lattices that can be broken up into a self-dual array, such that under a triangle-triangle transformation, the system remains the same. Studies using numerical methods have led to numerous improvements in algorithms and several theoretical discoveries.

Simple duality in two dimensions implies that all fully triangulated lattices (e.g., the triangular, union jack, cross dual, martini dual and asanoha or 3-12 dual, and the Delaunay triangulation) all have site thresholds of 12, and self-dual lattices (square, martini-B) have bond thresholds of 12.

The notation such as (4,82) comes from Grünbaum and Shephard, [3] and indicates that around a given vertex, going in the clockwise direction, one encounters first a square and then two octagons. Besides the eleven Archimedean lattices composed of regular polygons with every site equivalent, many other more complicated lattices with sites of different classes have been studied.

Error bars in the last digit or digits are shown by numbers in parentheses. Thus, 0.729724(3) signifies 0.729724 ± 0.000003, and 0.74042195(80) signifies 0.74042195 ± 0.00000080. The error bars variously represent one or two standard deviations in net error (including statistical and expected systematic error), or an empirical confidence interval, depending upon the source.

Percolation on networks

For a random tree-like network (i.e., a connected network with no cycle) without degree-degree correlation, it can be shown that such network can have a giant component, and the percolation threshold (transmission probability) is given by

.

Where is the generating function corresponding to the excess degree distribution, is the average degree of the network and is the second moment of the degree distribution. So, for example, for an ER network, since the degree distribution is a Poisson distribution, the threshold is at .

In networks with low clustering, , the critical point gets scaled by such that: [4]

This indicates that for a given degree distribution, the clustering leads to a larger percolation threshold, mainly because for a fixed number of links, the clustering structure reinforces the core of the network with the price of diluting the global connections. For networks with high clustering, strong clustering could induce the core–periphery structure, in which the core and periphery might percolate at different critical points, and the above approximate treatment is not applicable. [5]

Percolation in 2D

Thresholds on Archimedean lattices

This is a picture of the 11 Archimedean Lattices or Uniform tilings, in which all polygons are regular and each vertex is surrounded by the same sequence of polygons. The notation "(3 , 6)", for example, means that every vertex is surrounded by four triangles and one hexagon. Some common names that have been given to these lattices are listed in the table below. Archimedean-Lattice.png
This is a picture of the 11 Archimedean Lattices or Uniform tilings, in which all polygons are regular and each vertex is surrounded by the same sequence of polygons. The notation "(3 , 6)", for example, means that every vertex is surrounded by four triangles and one hexagon. Some common names that have been given to these lattices are listed in the table below.
LatticezSite percolation thresholdBond percolation threshold
3-12 or super-kagome, (3, 122 )33 0.807900764... = (1 − 2 sin (π/18))12 [7] 0.74042195(80), [8] 0.74042077(2), [9] 0.740420800(2), [10] 0.7404207988509(8), [11] [12] 0.740420798850811610(2), [13]
cross, truncated trihexagonal (4, 6, 12)330.746, [14] 0.750, [15] 0.747806(4), [7] 0.7478008(2) [11] 0.6937314(1), [11] 0.69373383(72), [8] 0.693733124922(2) [13]
square octagon, bathroom tile, 4-8, truncated square

(4, 82)

3-0.729, [14] 0.729724(3), [7] 0.7297232(5) [11] 0.6768, [16] 0.67680232(63), [8] 0.6768031269(6), [11] 0.6768031243900113(3), [13]
honeycomb (63)330.6962(6), [17] 0.697040230(5), [11] 0.6970402(1), [18] 0.6970413(10), [19] 0.697043(3), [7] 0.652703645... = 1-2 sin (π/18), 1+ p3-3p2=0 [20]
kagome (3, 6, 3, 6)440.652703645... = 1 − 2 sin(π/18) [20] 0.5244053(3), [21] 0.52440516(10), [19] 0.52440499(2), [18] 0.524404978(5), [9] 0.52440572..., [22] 0.52440500(1), [10] 0.524404999173(3), [11] [12] 0.524404999167439(4) [23] 0.52440499916744820(1) [13]
ruby, [24] rhombitrihexagonal (3, 4, 6, 4)440.620, [14] 0.621819(3), [7] 0.62181207(7) [11] 0.52483258(53), [8] 0.5248311(1), [11] 0.524831461573(1) [13]
square (44)440.59274(10), [25] 0.59274605079210(2), [23] 0.59274601(2), [11] 0.59274605095(15), [26] 0.59274621(13), [27] 0.592746050786(3), [28] 0.59274621(33), [29] 0.59274598(4), [30] [31] 0.59274605(3), [18] 0.593(1), [32] 0.591(1), [33] 0.569(13), [34] 0.59274(5) [35] 12
snub hexagonal, maple leaf [36] (34,6)550.579 [15] 0.579498(3) [7] 0.43430621(50), [8] 0.43432764(3), [11] 0.4343283172240(6), [13]
snub square, puzzle (32, 4, 3, 4 )550.550, [14] [37] 0.550806(3) [7] 0.41413743(46), [8] 0.4141378476(7), [11] 0.4141378565917(1), [13]
frieze, elongated triangular(33, 42)550.549, [14] 0.550213(3), [7] 0.5502(8) [38] 0.4196(6), [38] 0.41964191(43), [8] 0.41964044(1), [11] 0.41964035886369(2) [13]
triangular (36)66120.347296355... = 2 sin (π/18), 1 + p3 − 3p = 0 [20]

Note: sometimes "hexagonal" is used in place of honeycomb, although in some contexts a triangular lattice is also called a hexagonal lattice. z = bulk coordination number.

2D lattices with extended and complex neighborhoods

In this section, sq-1,2,3 corresponds to square (NN+2NN+3NN), [39] etc. Equivalent to square-2N+3N+4N, [40] sq(1,2,3). [41] tri = triangular, hc = honeycomb.

LatticezSite percolation thresholdBond percolation threshold
sq-1, sq-2, sq-3, sq-540.5927... [39] [40] (square site)
sq-1,2, sq-2,3, sq-3,580.407... [39] [40] [42] (square matching)0.25036834(6), [18] 0.2503685, [43] 0.25036840(4) [44]
sq-1,380.337 [39] [40] 0.2214995 [43]
sq-2,5: 2NN+5NN80.337 [40]
hc-1,2,3: honeycomb-NN+2NN+3NN120.300, [41] 0.300, [15] 0.302960... = 1-pc(site, hc) [45]
tri-1,2: triangular-NN+2NN120.295, [41] 0.289, [15] 0.290258(19) [46]
tri-2,3: triangular-2NN+3NN120.232020(36), [47] 0.232020(20) [46]
sq-4: square-4NN80.270... [40]
sq-1,5: square-NN+5NN (r ≤ 2)80.277 [40]
sq-1,2,3: square-NN+2NN+3NN120.292, [48] 0.290(5) [49] 0.289, [15] 0.288, [39] [40] 0.1522203 [43]
sq-2,3,5: square-2NN+3NN+5NN120.288 [40]
sq-1,4: square-NN+4NN120.236 [40]
sq-2,4: square-2NN+4NN120.225 [40]
tri-4: triangular-4NN120.192450(36), [47] 0.1924428(50) [46]
hc-2,4: honeycomb-2NN+4NN120.2374 [50]
tri-1,3: triangular-NN+3NN120.264539(21) [46]
tri-1,2,3: triangular-NN+2NN+3NN180.225, [48] 0.215, [15] 0.215459(36) [47] 0.2154657(17) [46]
sq-3,4: 3NN+4NN120.221 [40]
sq-1,2,5: NN+2NN+5NN120.240 [40] 0.13805374 [43]
sq-1,3,5: NN+3NN+5NN120.233 [40]
sq-4,5: 4NN+5NN120.199 [40]
sq-1,2,4: NN+2NN+4NN160.219 [40]
sq-1,3,4: NN+3NN+4NN160.208 [40]
sq-2,3,4: 2NN+3NN+4NN160.202 [40]
sq-1,4,5: NN+4NN+5NN160.187 [40]
sq-2,4,5: 2NN+4NN+5NN160.182 [40]
sq-3,4,5: 3NN+4NN+5NN160.179 [40]
sq-1,2,3,5: NN+2NN+3NN+5NN160.208 [40] 0.1032177 [43]
tri-4,5: 4NN+5NN180.140250(36), [47]
sq-1,2,3,4: NN+2NN+3NN+4NN ()200.19671(9), [51] 0.196, [40] 0.196724(10) [52] 0.0841509 [43]
sq-1,2,4,5: NN+2NN+4NN+5NN200.177 [40]
sq-1,3,4,5: NN+3NN+4NN+5NN200.172 [40]
sq-2,3,4,5: 2NN+3NN+4NN+5NN200.167 [40]
sq-1,2,3,5,6: NN+2NN+3NN+5NN+6NN200.0783110 [43]
sq-1,2,3,4,5: NN+2NN+3NN+4NN+5NN ()240.164 [40]
tri-1,4,5: NN+4NN+5NN240.131660(36) [47]
sq-1,...,6: NN+...+6NN (r≤3)280.142 [15] 0.0558493 [43]
tri-2,3,4,5: 2NN+3NN+4NN+5NN300.117460(36) [47] 0.135823(27) [46]
tri-1,2,3,4,5: NN+2NN+3NN+4NN+5NN
360.115, [15] 0.115740(36), [47] 0.1157399(58) [46]
sq-1,...,7: NN+...+7NN ()360.113 [15] 0.04169608 [43]
square: square distance ≤ 4400.105(5) [49]
sq-(1,...,8: NN+..+8NN ()440.095, [37] 0.095765(5), [52] 0.09580(2) [51]
sq-1,...,9: NN+..+9NN (r≤4)480.086 [15] 0.02974268 [43]
sq-1,...,11: NN+...+11NN ()600.02301190(3) [43]
sq-1,...,23 (r ≤ 7)1480.008342595 [44]
sq-1,...,32: NN+...+32NN ()2240.0053050415(33) [43]
sq-1,...,86: NN+...+86NN (r≤15)7080.001557644(4) [53]
sq-1,...,141: NN+...+141NN ()12240.000880188(90) [43]
sq-1,...,185: NN+...+185NN (r≤23)16520.000645458(4) [53]
sq-1,...,317: NN+...+317NN (r≤31)30000.000349601(3) [53]
sq-1,...,413: NN+...+413NN ()40160.0002594722(11) [43]
square: square distance ≤ 6840.049(5) [49]
square: square distance ≤ 81440.028(5) [49]
square: square distance ≤ 102200.019(5) [49]
2x2 lattice squares* (also above)20φc = 0.58365(2), [52] pc = 0.196724(10), [52] 0.19671(9), [51]
3x3 lattice squares* (also above)44φc = 0.59586(2), [52] pc = 0.095765(5), [52] 0.09580(2) [51]
4x4 lattice squares*76φc = 0.60648(1), [52] pc = 0.0566227(15), [52] 0.05665(3), [51]
5x5 lattice squares*116φc = 0.61467(2), [52] pc = 0.037428(2), [52] 0.03745(2), [51]
6x6 lattice squares*220pc = 0.02663(1), [51]
10x10 lattice squares*436φc = 0.36391(2), [52] pc = 0.0100576(5) [52]

Here NN = nearest neighbor, 2NN = second nearest neighbor (or next nearest neighbor), 3NN = third nearest neighbor (or next-next nearest neighbor), etc. These are also called 2N, 3N, 4N respectively in some papers. [39]

2D distorted lattices

Here, one distorts a regular lattice of unit spacing by moving vertices uniformly within the box , and considers percolation when sites are within Euclidean distance of each other.

LatticeSite percolation thresholdBond percolation threshold
square0.21.10.8025(2) [54]
0.21.20.6667(5) [54]
0.11.10.6619(1) [54]

Overlapping shapes on 2D lattices

Site threshold is number of overlapping objects per lattice site. k is the length (net area). Overlapping squares are shown in the complex neighborhood section. Here z is the coordination number to k-mers of either orientation, with for sticks.

SystemkzSite coverage φcSite percolation threshold pc
1 x 2 dimer, square lattice2220.54691 [51]

0.5483(2) [55]

0.17956(3) [51]

0.18019(9) [55]

1 x 2 aligned dimer, square lattice2140.5715(18) [55] 0.3454(13) [55]
1 x 3 trimer, square lattice3370.49898 [51]

0.50004(64) [55]

0.10880(2) [51]

0.1093(2) [55]

1 x 4 stick, square lattice4540.45761 [51] 0.07362(2) [51]
1 x 5 stick, square lattice5730.42241 [51] 0.05341(1) [51]
1 x 6 stick, square lattice6940.39219 [51] 0.04063(2) [51]

The coverage is calculated from by for sticks, because there are sites where a stick will cause an overlap with a given site.

For aligned sticks:

Approximate formulas for thresholds of Archimedean lattices

LatticezSite percolation thresholdBond percolation threshold
(3, 122 )3
(4, 6, 12)3
(4, 82)30.676835..., 4p3 + 3p4 − 6 p5 − 2 p6 = 1 [56]
honeycomb (63)3
kagome (3, 6, 3, 6)40.524430..., 3p2 + 6p3 − 12 p4+ 6 p5p6 = 1 [57]
(3, 4, 6, 4)4
square (44)412 (exact)
(34,6 )50.434371..., 12p3 + 36p4 − 21p5 − 327 p6 + 69p7 + 2532p8 − 6533 p9 + 8256 p10 − 6255p11 + 2951p12 − 837 p13 + 126 p14 − 7p15 = 1 [ citation needed ]
snub square, puzzle (32, 4, 3, 4 )5
(33, 42)5
triangular (36)612 (exact)

AB percolation and colored percolation in 2D

In AB percolation, a is the proportion of A sites among B sites, and bonds are drawn between sites of opposite species. [58] It is also called antipercolation.

In colored percolation, occupied sites are assigned one of colors with equal probability, and connection is made along bonds between neighbors of different colors. [59]

LatticezSite percolation threshold
triangular AB660.2145, [58] 0.21524(34), [60] 0.21564(3) [61]
AB on square-covering lattice66 [62]
square three-color440.80745(5) [59]
square four-color440.73415(4) [59]
square five-color440.69864(7) [59]
square six-color440.67751(5) [59]
triangular two-color660.72890(4) [59]
triangular three-color660.63005(4) [59]
triangular four-color660.59092(3) [59]
triangular five-color660.56991(5) [59]
triangular six-color660.55679(5) [59]

Site-bond percolation in 2D

Site bond percolation. Here is the site occupation probability and is the bond occupation probability, and connectivity is made only if both the sites and bonds along a path are occupied. The criticality condition becomes a curve = 0, and some specific critical pairs are listed below.

Square lattice:

LatticezSite percolation thresholdBond percolation threshold
square440.615185(15) [63] 0.95
0.667280(15) [63] 0.85
0.732100(15) [63] 0.75
0.750.726195(15) [63]
0.815560(15) [63] 0.65
0.850.615810(30) [63]
0.950.533620(15) [63]

Honeycomb (hexagonal) lattice:

LatticezSite percolation thresholdBond percolation threshold
honeycomb330.7275(5) [64] 0.95
0. 0.7610(5) [64] 0.90
0.7986(5) [64] 0.85
0.800.8481(5) [64]
0.8401(5) [64] 0.80
0.850.7890(5) [64]
0.900.7377(5) [64]
0.950.6926(5) [64]

Kagome lattice:

LatticezSite percolation thresholdBond percolation threshold
kagome440.6711(4), [64] 0.67097(3) [65] 0.95
0.6914(5), [64] 0.69210(2) [65] 0.90
0.7162(5), [64] 0.71626(3) [65] 0.85
0.7428(5), [64] 0.74339(3) [65] 0.80
0.750.7894(9) [64]
0.7757(8), [64] 0.77556(3) [65] 0.75
0.800.7152(7) [64]
0.81206(3) [65] 0.70
0.850.6556(6) [64]
0.85519(3) [65] 0.65
0.900.6046(5) [64]
0.90546(3) [65] 0.60
0.950.5615(4) [64]
0.96604(4) [65] 0.55
0.9854(3) [65] 0.53

* For values on different lattices, see "An investigation of site-bond percolation on many lattices". [64]

Approximate formula for site-bond percolation on a honeycomb lattice

LatticezThresholdNotes
(63) honeycomb33, When equal: ps = pb = 0.82199approximate formula, ps = site prob., pb = bond prob., pbc = 1 − 2 sin (π/18), [19] exact at ps=1, pb=pbc.

Archimedean duals (Laves lattices)

Example image caption Dual Archimedean.png
Example image caption

Laves lattices are the duals to the Archimedean lattices. Drawings from. [6] See also Uniform tilings.

LatticezSite percolation thresholdBond percolation threshold
Cairo pentagonal

D(32,4,3,4)=(23)(53)+(13)(54)

3,43 130.6501834(2), [11] 0.650184(5) [6] 0.585863... = 1 − pcbond(32,4,3,4)
Pentagonal D(33,42)=(13)(54)+(23)(53)3,43 130.6470471(2), [11] 0.647084(5), [6] 0.6471(6) [38] 0.580358... = 1 − pcbond(33,42), 0.5800(6) [38]
D(34,6)=(15)(46)+(45)(43)3,63 350.639447 [6] 0.565694... = 1 − pcbond(34,6 )
dice, rhombille tiling

D(3,6,3,6) = (13)(46) + (23)(43)

3,640.5851(4), [66] 0.585040(5) [6] 0.475595... = 1 − pcbond(3,6,3,6 )
ruby dual

D(3,4,6,4) = (16)(46) + (26)(43) + (36)(44)

3,4,640.582410(5) [6] 0.475167... = 1 − pcbond(3,4,6,4 )
union jack, tetrakis square tiling

D(4,82) = (12)(34) + (12)(38)

4,86120.323197... = 1 − pcbond(4,82 )
bisected hexagon, [67] cross dual

D(4,6,12)= (16)(312)+(26)(36)+(12)(34)

4,6,126120.306266... = 1 − pcbond(4,6,12)
asanoha (hemp leaf) [68]

D(3, 122)=(23)(33)+(13)(312)

3,126120.259579... = 1 − pcbond(3, 122)

2-uniform lattices

Top 3 lattices: #13 #12 #36
Bottom 3 lattices: #34 #37 #11

20 2 uniform lattices 2uni4m1.png
20 2 uniform lattices

[3]

Top 2 lattices: #35 #30
Bottom 2 lattices: #41 #42

20 2 uniform lattices 2uni4m2.png
20 2 uniform lattices

[3]

Top 4 lattices: #22 #23 #21 #20
Bottom 3 lattices: #16 #17 #15

20 2 uniform lattices 2uni4m3.png
20 2 uniform lattices

[3]

Top 2 lattices: #31 #32
Bottom lattice: #33

20 2 uniform lattices 2uni4m4.png
20 2 uniform lattices

[3]

#LatticezSite percolation thresholdBond percolation threshold
41(12)(3,4,3,12) + (12)(3, 122)4,33.50.7680(2) [69] 0.67493252(36)[ citation needed ]
42(13)(3,4,6,4) + (23)(4,6,12)4,33130.7157(2) [69] 0.64536587(40)[ citation needed ]
36(17)(36) + (67)(32,4,12)6,44 270.6808(2) [69] 0.55778329(40)[ citation needed ]
15(23)(32,62) + (13)(3,6,3,6)4,440.6499(2) [69] 0.53632487(40)[ citation needed ]
34(17)(36) + (67)(32,62)6,44 270.6329(2) [69] 0.51707873(70)[ citation needed ]
16(45)(3,42,6) + (15)(3,6,3,6)4,440.6286(2) [69] 0.51891529(35)[ citation needed ]
17(45)(3,42,6) + (15)(3,6,3,6)*4,440.6279(2) [69] 0.51769462(35)[ citation needed ]
35(23)(3,42,6) + (13)(3,4,6,4)4,440.6221(2) [69] 0.51973831(40)[ citation needed ]
11(12)(34,6) + (12)(32,62)5,44.50.6171(2) [69] 0.48921280(37)[ citation needed ]
37(12)(33,42) + (12)(3,4,6,4)5,44.50.5885(2) [69] 0.47229486(38)[ citation needed ]
30(12)(32,4,3,4) + (12)(3,4,6,4)5,44.50.5883(2) [69] 0.46573078(72)[ citation needed ]
23(12)(33,42) + (12)(44)5,44.50.5720(2) [69] 0.45844622(40)[ citation needed ]
22(23)(33,42) + (13)(44)5,44 230.5648(2) [69] 0.44528611(40)[ citation needed ]
12(14)(36) + (34)(34,6)6,55 140.5607(2) [69] 0.41109890(37)[ citation needed ]
33(12)(33,42) + (12)(32,4,3,4)5,550.5505(2) [69] 0.41628021(35)[ citation needed ]
32(13)(33,42) + (23)(32,4,3,4)5,550.5504(2) [69] 0.41549285(36)[ citation needed ]
31(17)(36) + (67)(32,4,3,4)6,55 170.5440(2) [69] 0.40379585(40)[ citation needed ]
13(12)(36) + (12)(34,6)6,55.50.5407(2) [69] 0.38914898(35)[ citation needed ]
21(13)(36) + (23)(33,42)6,55 130.5342(2) [69] 0.39491996(40)[ citation needed ]
20(12)(36) + (12)(33,42)6,55.50.5258(2) [69] 0.38285085(38)[ citation needed ]

Inhomogeneous 2-uniform lattice

2-uniform lattice #37 2uniformLattice37.pdf
2-uniform lattice #37

This figure shows something similar to the 2-uniform lattice #37, except the polygons are not all regular—there is a rectangle in the place of the two squares—and the size of the polygons is changed. This lattice is in the isoradial representation in which each polygon is inscribed in a circle of unit radius. The two squares in the 2-uniform lattice must now be represented as a single rectangle in order to satisfy the isoradial condition. The lattice is shown by black edges, and the dual lattice by red dashed lines. The green circles show the isoradial constraint on both the original and dual lattices. The yellow polygons highlight the three types of polygons on the lattice, and the pink polygons highlight the two types of polygons on the dual lattice. The lattice has vertex types (12)(33,42) + (12)(3,4,6,4), while the dual lattice has vertex types (115)(46)+(615)(42,52)+(215)(53)+(615)(52,4). The critical point is where the longer bonds (on both the lattice and dual lattice) have occupation probability p = 2 sin (π/18) = 0.347296... which is the bond percolation threshold on a triangular lattice, and the shorter bonds have occupation probability 1 − 2 sin(π/18) = 0.652703..., which is the bond percolation on a hexagonal lattice. These results follow from the isoradial condition [70] but also follow from applying the star-triangle transformation to certain stars on the honeycomb lattice. Finally, it can be generalized to having three different probabilities in the three different directions, p1, p2 and p3 for the long bonds, and 1 − p1, 1 − p2, and 1 − p3 for the short bonds, where p1, p2 and p3 satisfy the critical surface for the inhomogeneous triangular lattice.

Thresholds on 2D bow-tie and martini lattices

To the left, center, and right are: the martini lattice, the martini-A lattice, the martini-B lattice. Below: the martini covering/medial lattice, same as the 2×2, 1×1 subnet for kagome-type lattices (removed).

Example image caption Martini.png
Example image caption

Some other examples of generalized bow-tie lattices (a-d) and the duals of the lattices (e-h):

Example image caption Bow-tie.png
Example image caption
LatticezSite percolation thresholdBond percolation threshold
martini (34)(3,92)+(14)(93)330.764826..., 1 + p4 − 3p3 = 0 [71] 0.707107... = 1/2 [72]
bow-tie (c)3,43 170.672929..., 1 − 2p3 − 2p4 − 2p5 − 7p6 + 18p7 + 11p8 − 35p9 + 21p10 − 4p11 = 0 [73]
bow-tie (d)3,43 130.625457..., 1 − 2p2 − 3p3 + 4p4p5 = 0 [73]
martini-A (23)(3,72)+(13)(3,73)3,43 131/2 [73] 0.625457..., 1 − 2p2 − 3p3 + 4p4p5 = 0 [73]
bow-tie dual (e)3,43 230.595482..., 1-pcbond (bow-tie (a)) [73]
bow-tie (b)3,4,63 230.533213..., 1 − p − 2p3 -4p4-4p5+156+ 13p7-36p8+19p9+ p10 + p11=0 [73]
martini covering/medial (12)(33,9) + (12)(3,9,3,9)440.707107... = 1/2 [72] 0.57086651(33)[ citation needed ]
martini-B (12)(3,5,3,52) + (12)(3,52)3, 540.618034... = 2/(1 + 5), 1- p2p = 0 [71] [73] 12 [72] [73]
bow-tie dual (f)3,4,84 250.466787..., 1 − pcbond (bow-tie (b)) [73]
bow-tie (a) (12)(32,4,32,4) + (12)(3,4,3)4,650.5472(2), [38] 0.5479148(7) [74] 0.404518..., 1 − p − 6p2 + 6p3p5 = 0 [73] [75]
bow-tie dual (h)3,6,850.374543..., 1 − pcbond(bow-tie (d)) [73]
bow-tie dual (g)3,6,105 120.547... = pcsite(bow-tie(a))0.327071..., 1 − pcbond(bow-tie (c)) [73]
martini dual (12)(33) + (12)(39)3,96120.292893... = 1 − 1/2 [72]

Thresholds on 2D covering, medial, and matching lattices

LatticezSite percolation thresholdBond percolation threshold
(4, 6, 12) covering/medial44pcbond(4, 6, 12) = 0.693731...0.5593140(2), [11] 0.559315(1)[ citation needed ]
(4, 82) covering/medial, square kagome44pcbond(4,82) = 0.676803...0.544798017(4), [11] 0.54479793(34)[ citation needed ]
(34, 6) medial440.5247495(5) [11]
(3,4,6,4) medial440.51276 [11]
(32, 4, 3, 4) medial440.512682929(8) [11]
(33, 42) medial440.5125245984(9) [11]
square covering (non-planar)66120.3371(1) [56]
square matching lattice (non-planar)881 − pcsite(square) = 0.407253...0.25036834(6) [18]
4,6,12covering.svg
(4, 6, 12) covering/medial lattice
4,82coveringlattice.pdf
(4, 82) covering/medial lattice
312coveringdual.pdf
(3,122) covering/medial lattice (in light grey), equivalent to the kagome (2 × 2) subnet, and in black, the dual of these lattices.
(3,4,6,4) medial lattice.png
(3,4,6,4) covering/medial lattice, equivalent to the 2-uniform lattice #30, but with facing triangles made into a diamond. This pattern appears in Iranian tilework. [76] such as Western tomb tower, Kharraqan. [77]
(3,4,6,4) medial dual.png
(3,4,6,4) medial dual, shown in red, with medial lattice in light gray behind it

Thresholds on 2D chimera non-planar lattices

LatticezSite percolation thresholdBond percolation threshold
K(2,2)440.51253(14) [78] 0.44778(15) [78]
K(3,3)660.43760(15) [78] 0.35502(15) [78]
K(4,4)880.38675(7) [78] 0.29427(12) [78]
K(5,5)10100.35115(13) [78] 0.25159(13) [78]
K(6,6)12120.32232(13) [78] 0.21942(11) [78]
K(7,7)14140.30052(14) [78] 0.19475(9) [78]
K(8,8)16160.28103(11) [78] 0.17496(10) [78]

Thresholds on subnet lattices

Example image caption Kagomesubnets.png
Example image caption

The 2 x 2, 3 x 3, and 4 x 4 subnet kagome lattices. The 2 × 2 subnet is also known as the "triangular kagome" lattice. [79]

LatticezSite percolation thresholdBond percolation threshold
checkerboard – 2 × 2 subnet4,30.596303(1) [80]
checkerboard – 4 × 4 subnet4,30.633685(9) [80]
checkerboard – 8 × 8 subnet4,30.642318(5) [80]
checkerboard – 16 × 16 subnet4,30.64237(1) [80]
checkerboard – 32 × 32 subnet4,30.64219(2) [80]
checkerboard – subnet4,30.642216(10) [80]
kagome – 2 × 2 subnet = (3, 122) covering/medial4pcbond (3, 122) = 0.74042077...0.600861966960(2), [11] 0.6008624(10), [19] 0.60086193(3) [9]
kagome – 3 × 3 subnet40.6193296(10), [19] 0.61933176(5), [9] 0.61933044(32)[ citation needed ]
kagome – 4 × 4 subnet40.625365(3), [19] 0.62536424(7) [9]
kagome – subnet40.628961(2) [19]
kagome – (1 × 1):(2 × 2) subnet = martini covering/medial4pcbond(martini) = 1/2 = 0.707107...0.57086648(36)[ citation needed ]
kagome – (1 × 1):(3 × 3) subnet4,30.728355596425196... [9] 0.58609776(37)[ citation needed ]
kagome – (1 × 1):(4 × 4) subnet0.738348473943256... [9]
kagome – (1 × 1):(5 × 5) subnet0.743548682503071... [9]
kagome – (1 × 1):(6 × 6) subnet0.746418147634282... [9]
kagome – (2 × 2):(3 × 3) subnet0.61091770(30)[ citation needed ]
triangular – 2 × 2 subnet6,40.471628788 [80]
triangular – 3 × 3 subnet6,40.509077793 [80]
triangular – 4 × 4 subnet6,40.524364822 [80]
triangular – 5 × 5 subnet6,40.5315976(10) [80]
triangular – subnet6,40.53993(1) [80]

Thresholds of random sequentially adsorbed objects

(For more results and comparison to the jamming density, see Random sequential adsorption)

systemzSite threshold
dimers on a honeycomb lattice30.69, [81] 0.6653 [82]
dimers on a triangular lattice60.4872(8), [81] 0.4873, [82]
aligned linear dimers on a triangular lattice 6 0.5157(2) [83]
aligned linear 4-mers on a triangular lattice60.5220(2) [83]
aligned linear 8-mers on a triangular lattice60.5281(5) [83]
aligned linear 12-mers on a triangular lattice60.5298(8) [83]
linear 16-mers on a triangular lattice6aligned 0.5328(7) [83]
linear 32-mers on a triangular lattice6aligned 0.5407(6) [83]
linear 64-mers on a triangular lattice6aligned 0.5455(4) [83]
aligned linear 80-mers on a triangular lattice60.5500(6) [83]
aligned linear k on a triangular lattice60.582(9) [83]
dimers and 5% impurities, triangular lattice60.4832(7) [84]
parallel dimers on a square lattice40.5863 [85]
dimers on a square lattice40.5617, [85] 0.5618(1), [86] 0.562, [87] 0.5713 [82]
linear 3-mers on a square lattice40.528 [87]
3-site 120° angle, 5% impurities, triangular lattice60.4574(9) [84]
3-site triangles, 5% impurities, triangular lattice60.5222(9) [84]
linear trimers and 5% impurities, triangular lattice60.4603(8) [84]
linear 4-mers on a square lattice40.504 [87]
linear 5-mers on a square lattice40.490 [87]
linear 6-mers on a square lattice40.479 [87]
linear 8-mers on a square lattice40.474, [87] 0.4697(1) [86]
linear 10-mers on a square lattice40.469 [87]
linear 16-mers on a square lattice40.4639(1) [86]
linear 32-mers on a square lattice40.4747(2) [86]

The threshold gives the fraction of sites occupied by the objects when site percolation first takes place (not at full jamming). For longer k-mers see Ref. [88]

Thresholds of full dimer coverings of two dimensional lattices

Here, we are dealing with networks that are obtained by covering a lattice with dimers, and then consider bond percolation on the remaining bonds. In discrete mathematics, this problem is known as the 'perfect matching' or the 'dimer covering' problem.

systemzBond threshold
Parallel covering, square lattice60.381966... [89]
Shifted covering, square lattice60.347296... [89]
Staggered covering, square lattice60.376825(2) [89]
Random covering, square lattice60.367713(2) [89]
Parallel covering, triangular lattice100.237418... [89]
Staggered covering, triangular lattice100.237497(2) [89]
Random covering, triangular lattice100.235340(1) [89]

Thresholds of polymers (random walks) on a square lattice

System is composed of ordinary (non-avoiding) random walks of length l on the square lattice. [90]

l (polymer length)zBond percolation
140.5(exact) [91]
240.47697(4) [91]
440.44892(6) [91]
840.41880(4) [91]

Thresholds of self-avoiding walks of length k added by random sequential adsorption

kzSite thresholdsBond thresholds
140.593(2) [92] 0.5009(2) [92]
240.564(2) [92] 0.4859(2) [92]
340.552(2) [92] 0.4732(2) [92]
440.542(2) [92] 0.4630(2) [92]
540.531(2) [92] 0.4565(2) [92]
640.522(2) [92] 0.4497(2) [92]
740.511(2) [92] 0.4423(2) [92]
840.502(2) [92] 0.4348(2) [92]
940.493(2) [92] 0.4291(2) [92]
1040.488(2) [92] 0.4232(2) [92]
1140.482(2) [92] 0.4159(2) [92]
1240.476(2) [92] 0.4114(2) [92]
1340.471(2) [92] 0.4061(2) [92]
1440.467(2) [92] 0.4011(2) [92]
1540.4011(2) [92] 0.3979(2) [92]

Thresholds on 2D inhomogeneous lattices

LatticezSite percolation thresholdBond percolation threshold
bow-tie with p = 12 on one non-diagonal bond30.3819654(5), [93] [56]

Thresholds for 2D continuum models

SystemΦcηcnc
Disks of radius r0.67634831(2), [94] 0.6763475(6), [95] 0.676339(4), [96] 0.6764(4), [97] 0.6766(5), [98] 0.676(2), [99] 0.679, [100] 0.674 [101] 0.676, [102] 0.680 [103] 1.1280867(5), [104] 1.1276(9), [105] 1.12808737(6), [94] 1.128085(2), [95] 1.128059(12), [96] 1.13,[ citation needed ] 0.8 [106] 1.43632505(10), [107] 1.43632545(8), [94] 1.436322(2), [95] 1.436289(16), [96] 1.436320(4), [108] 1.436323(3), [109] 1.438(2), [110] 1.216 (48) [111]
Ellipses, ε = 1.50.0043 [100] 0.004312.059081(7) [109]
Ellipses, ε = 530.65 [112] 1.05 [112] 2.28 [112]
Ellipses, ε = 20.6287945(12), [109] 0.63 [112] 0.991000(3), [109] 0.99 [112] 2.523560(8), [109] 2.5 [112]
Ellipses, ε = 30.56 [112] 0.82 [112] 3.157339(8), [109] 3.14 [112]
Ellipses, ε = 40.5 [112] 0.69 [112] 3.569706(8), [109] 3.5 [112]
Ellipses, ε = 50.455, [100] 0.455, [102] 0.46 [112] 0.607 [100] 3.861262(12), [109] 3.86 [100]
Ellipses, ε = 64.079365(17) [109]
Ellipses, ε = 74.249132(16) [109]
Ellipses, ε = 84.385302(15) [109]
Ellipses, ε = 94.497000(8) [109]
Ellipses, ε = 100.301, [100] 0.303, [102] 0.30 [112] 0.358 [100] 0.36 [112] 4.590416(23) [109] 4.56, [100] 4.5 [112]
Ellipses, ε = 154.894752(30) [109]
Ellipses, ε = 200.178, [100] 0.17 [112] 0.196 [100] 5.062313(39), [109] 4.99 [100]
Ellipses, ε = 500.081 [100] 0.084 [100] 5.393863(28), [109] 5.38 [100]
Ellipses, ε = 1000.0417 [100] 0.0426 [100] 5.513464(40), [109] 5.42 [100]
Ellipses, ε = 2000.021 [112] 0.0212 [112] 5.40 [112]
Ellipses, ε = 10000.0043 [100] 0.004315.624756(22), [109] 5.5
Superellipses, ε = 1, m = 1.50.671 [102]
Superellipses, ε = 2.5, m = 1.50.599 [102]
Superellipses, ε = 5, m = 1.50.469 [102]
Superellipses, ε = 10, m = 1.50.322 [102]
disco-rectangles, ε = 1.51.894 [108]
disco-rectangles, ε = 22.245 [108]
Aligned squares of side 0.66675(2), [52] 0.66674349(3), [94] 0.66653(1), [113] 0.6666(4), [114] 0.668 [101] 1.09884280(9), [94] 1.0982(3), [113] 1.098(1) [114] 1.09884280(9), [94] 1.0982(3), [113] 1.098(1) [114]
Randomly oriented squares0.62554075(4), [94] 0.6254(2) [114] 0.625, [102] 0.9822723(1), [94] 0.9819(6) [114] 0.982278(14) [115] 0.9822723(1), [94] 0.9819(6) [114] 0.982278(14) [115]
Randomly oriented squares within angle 0.6255(1) [114] 0.98216(15) [114]
Rectangles, ε = 1.10.624870(7)0.980484(19)1.078532(21) [115]
Rectangles, ε = 20.590635(5)0.893147(13)1.786294(26) [115]
Rectangles, ε = 30.5405983(34)0.777830(7)2.333491(22) [115]
Rectangles, ε = 40.4948145(38)0.682830(8)2.731318(30) [115]
Rectangles, ε = 50.4551398(31), 0.451 [102] 0.607226(6)3.036130(28) [115]
Rectangles, ε = 100.3233507(25), 0.319 [102] 0.3906022(37)3.906022(37) [115]
Rectangles, ε = 200.2048518(22)0.2292268(27)4.584535(54) [115]
Rectangles, ε = 500.09785513(36)0.1029802(4)5.149008(20) [115]
Rectangles, ε = 1000.0523676(6)0.0537886(6)5.378856(60) [115]
Rectangles, ε = 2000.02714526(34)0.02752050(35)5.504099(69) [115]
Rectangles, ε = 10000.00559424(6)0.00560995(6)5.609947(60) [115]
Sticks (needles) of length 5.63726(2), [116] 5.6372858(6), [94] 5.637263(11), [115] 5.63724(18) [117]
sticks with log-normal length dist. STD=0.54.756(3) [117]
sticks with correlated angle dist. s=0.56.6076(4) [117]
Power-law disks, x = 2.050.993(1) [118] 4.90(1)0.0380(6)
Power-law disks, x = 2.250.8591(5) [118] 1.959(5)0.06930(12)
Power-law disks, x = 2.50.7836(4) [118] 1.5307(17)0.09745(11)
Power-law disks, x = 40.69543(6) [118] 1.18853(19)0.18916(3)
Power-law disks, x = 50.68643(13) [118] 1.1597(3)0.22149(8)
Power-law disks, x = 60.68241(8) [118] 1.1470(1)0.24340(5)
Power-law disks, x = 70.6803(8) [118] 1.140(6)0.25933(16)
Power-law disks, x = 80.67917(9) [118] 1.1368(5)0.27140(7)
Power-law disks, x = 90.67856(12) [118] 1.1349(4)0.28098(9)
Voids around disks of radius r1 − Φc(disk) = 0.32355169(2), [94] 0.318(2), [119] 0.3261(6) [120]
2D continuum percolation with disks 2D continuum percolation with disks.jpg
2D continuum percolation with disks
2D continuum percolation with ellipses of aspect ratio 2 2D continuum percolation with ellipses of aspect ratio 2.jpg
2D continuum percolation with ellipses of aspect ratio 2

For disks, equals the critical number of disks per unit area, measured in units of the diameter , where is the number of objects and is the system size

For disks, equals critical total disk area.

gives the number of disk centers within the circle of influence (radius 2 r).

is the critical disk radius.

for ellipses of semi-major and semi-minor axes of a and b, respectively. Aspect ratio with .

for rectangles of dimensions and . Aspect ratio with .

for power-law distributed disks with , .

equals critical area fraction.

For disks, Ref. [99] use where is the density of disks of radius .

equals number of objects of maximum length per unit area.

For ellipses,

For void percolation, is the critical void fraction.

For more ellipse values, see [109] [112]

For more rectangle values, see [115]

Both ellipses and rectangles belong to the superellipses, with . For more percolation values of superellipses, see. [102]

For the monodisperse particle systems, the percolation thresholds of concave-shaped superdisks are obtained as seen in [121]

For binary dispersions of disks, see [95] [122] [123]

Thresholds on 2D random and quasi-lattices

Voronoi diagram (solid lines) and its dual, the Delaunay triangulation (dotted lines), for a Poisson distribution of points VoronoiDelaunay.svg
Voronoi diagram (solid lines) and its dual, the Delaunay triangulation (dotted lines), for a Poisson distribution of points
Delaunay triangulation Delaunay triangulation example.png
Delaunay triangulation
The Voronoi covering or line graph (dotted red lines) and the Voronoi diagram (black lines) VoronoiCov12.png
The Voronoi covering or line graph (dotted red lines) and the Voronoi diagram (black lines)
The Relative Neighborhood Graph (black lines) superimposed on the Delaunay triangulation (black plus grey lines). RNGonDelaunayTriangulation128vertices.jpg
The Relative Neighborhood Graph (black lines) superimposed on the Delaunay triangulation (black plus grey lines).
The Gabriel Graph, a subgraph of the Delaunay triangulation in which the circle surrounding each edge does not enclose any other points of the graph Gabriel Graph.png
The Gabriel Graph, a subgraph of the Delaunay triangulation in which the circle surrounding each edge does not enclose any other points of the graph
Uniform Infinite Planar Triangulation, showing bond clusters. From UniformInfinitePlanarTriangulation.png
Uniform Infinite Planar Triangulation, showing bond clusters. From
LatticezSite percolation thresholdBond percolation threshold
Relative neighborhood graph 2.55760.796(2) [124] 0.771(2) [124]
Voronoi tessellation 30.71410(2), [126] 0.7151* [69] 0.68, [127] 0.6670(1), [128] 0.6680(5), [129] 0.666931(5) [126]
Voronoi covering/medial40.666931(2) [126] [128] 0.53618(2) [126]
Randomized kagome/square-octagon, fraction r=1240.6599 [16]
Penrose rhomb dual40.6381(3) [66] 0.5233(2) [66]
Gabriel graph40.6348(8), [130] 0.62 [131] 0.5167(6), [130] 0.52 [131]
Random-line tessellation, dual40.586(2) [132]
Penrose rhomb 40.5837(3), [66] 0.0.5610(6) (weighted bonds) [133] 0.58391(1) [134] 0.483(5), [135] 0.4770(2) [66]
Octagonal lattice, "chemical" links (Ammann–Beenker tiling)40.585 [136] 0.48 [136]
Octagonal lattice, "ferromagnetic" links5.170.543 [136] 0.40 [136]
Dodecagonal lattice, "chemical" links3.630.628 [136] 0.54 [136]
Dodecagonal lattice, "ferromagnetic" links4.270.617 [136] 0.495 [136]
Delaunay triangulation 612 [137] 0.3333(1) [128] 0.3326(5), [129] 0.333069(2) [126]
Uniform Infinite Planar Triangulation [138] 612(23 – 1)/11 ≈ 0.2240 [125] [139]

*Theoretical estimate

Thresholds on 2D correlated systems

Assuming power-law correlations

latticeαSite percolation thresholdBond percolation threshold
square30.561406(4) [140]
square20.550143(5) [140]
square0.10.508(4) [140]

Thresholds on slabs

h is the thickness of the slab, h × ∞ × ∞. Boundary conditions (b.c.) refer to the top and bottom planes of the slab.

LatticehzSite percolation thresholdBond percolation threshold
simple cubic (open b.c.)255 0.47424, [141] 0.4756 [142]
bcc (open b.c.)20.4155 [142]
hcp (open b.c.)20.2828 [142]
diamond (open b.c.)20.5451 [142]
simple cubic (open b.c.)30.4264 [142]
bcc (open b.c.)30.3531 [142]
bcc (periodic b.c.)30.21113018(38) [143]
hcp (open b.c.)30.2548 [142]
diamond (open b.c.)30.5044 [142]
simple cubic (open b.c.)40.3997, [141] 0.3998 [142]
bcc (open b.c.)40.3232 [142]
bcc (periodic b.c.)40.20235168(59) [143]
hcp (open b.c.)40.2405 [142]
diamond (open b.c.)40.4842 [142]
simple cubic (periodic b.c.)5660.278102(5) [143]
simple cubic (open b.c.)60.3708 [142]
simple cubic (periodic b.c.)6660.272380(2) [143]
bcc (open b.c.)60.2948 [142]
hcp (open b.c.)60.2261 [142]
diamond (open b.c.)60.4642 [142]
simple cubic (periodic b.c.)7660.3459514(12) [143] 0.268459(1) [143]
simple cubic (open b.c.)80.3557, [141] 0.3565 [142]
simple cubic (periodic b.c.)8660.265615(5) [143]
bcc (open b.c.)80.2811 [142]
hcp (open b.c.)80.2190 [142]
diamond (open b.c.)80.4549 [142]
simple cubic (open b.c.)120.3411 [142]
bcc (open b.c.)120.2688 [142]
hcp (open b.c.)120.2117 [142]
diamond (open b.c.)120.4456 [142]
simple cubic (open b.c.)160.3219, [141] 0.3339 [142]
bcc (open b.c.)160.2622 [142]
hcp (open b.c.)160.2086 [142]
diamond (open b.c.)160.4415 [142]
simple cubic (open b.c.)320.3219, [141]
simple cubic (open b.c.)640.3165, [141]
simple cubic (open b.c.)1280.31398, [141]

Percolation in 3D

Latticezfilling factor*filling fraction*Site percolation thresholdBond percolation threshold
(10,3)-a oxide (or site-bond) [144] 23 322.40.748713(22) [144] = (pc,bond(10,3) – a)12 = 0.742334(25) [145]
(10,3)-b oxide (or site-bond) [144] 23 322.40.233 [146] 0.1740.745317(25) [144] = (pc,bond(10,3) – b)12 = 0.739388(22) [145]
silicon dioxide (diamond site-bond) [144] 4,222 230.638683(35) [144]
Modified (10,3)-b [147] 32,22 230.627 [147]
(8,3)-a [145] 330.577962(33) [145] 0.555700(22) [145]
(10,3)-a [145] gyroid [148] 330.571404(40) [145] 0.551060(37) [145]
(10,3)-b [145] 330.565442(40) [145] 0.546694(33) [145]
cubic oxide (cubic site-bond) [144] 6,233.50.524652(50) [144]
bcc dual40.4560(6) [149] 0.4031(6) [149]
ice Ih44π 3 / 16 = 0.3400870.1470.433(11) [150] 0.388(10) [151]
diamond (Ice Ic)44π 3 / 16 = 0.3400870.14623320.4299(8), [152] 0.4299870(4), [153] 0.426+0.08
−0.02
, [154] 0.4297(4) [155] 0.4301(4), [156] 0.428(4), [157] 0.425(15), [158] 0.425, [41] [48] 0.436(12) [150]
0.3895892(5), [153] 0.3893(2), [156] 0.3893(3), [155] 0.388(5), [158] 0.3886(5), [152] 0.388(5) [157] 0.390(11) [151]
diamond dual6 230.3904(5) [149] 0.2350(5) [149]
3D kagome (covering graph of the diamond lattice)6π 2 / 12 = 0.370240.14420.3895(2) [159] =pc(site) for diamond dual and pc(bond) for diamond lattice [149] 0.2709(6) [149]
Bow-tie stack dual5 130.3480(4) [38] 0.2853(4) [38]
honeycomb stack550.3701(2) [38] 0.3093(2) [38]
octagonal stack dual550.3840(4) [38] 0.3168(4) [38]
pentagonal stack5 130.3394(4) [38] 0.2793(4) [38]
kagome stack660.4534500.15170.3346(4) [38] 0.2563(2) [38]
fcc dual42,85 130.3341(5) [149] 0.2703(3) [149]
simple cubic 66π / 6 = 0.52359880.16315740.307(10), [158] 0.307, [41] 0.3115(5), [160] 0.3116077(2), [161] 0.311604(6), [162] 0.311605(5), [163] 0.311600(5), [164] 0.3116077(4), [165] 0.3116081(13), [166] 0.3116080(4), [167] 0.3116060(48), [168] 0.3116004(35), [169] 0.31160768(15) [153] 0.247(5), [158] 0.2479(4), [152] 0.2488(2), [170] 0.24881182(10), [161] 0.2488125(25), [171] 0.2488126(5), [172]
hcp dual44,825 130.3101(5) [149] 0.2573(3) [149]
dice stack5,86π 3 / 9 = 0.6046000.18130.2998(4) [38] 0.2378(4) [38]
bow-tie stack770.2822(6) [38] 0.2092(4) [38]
Stacked triangular / simple hexagonal880.26240(5), [173] 0.2625(2), [174] 0.2623(2) [38] 0.18602(2), [173] 0.1859(2) [38]
octagonal (union-jack) stack6,1080.2524(6) [38] 0.1752(2) [38]
bcc 880.243(10), [158] 0.243, [41] 0.2459615(10), [167] 0.2460(3), [175] 0.2464(7), [152] 0.2458(2) [156] 0.178(5), [158] 0.1795(3), [152] 0.18025(15), [170] 0.1802875(10) [172]
simple cubic with 3NN (same as bcc)880.2455(1), [176] 0.2457(7) [177]
fcc, D31212π / (3 2) = 0.7404800.1475300.195, [41] 0.198(3), [178] 0.1998(6), [152] 0.1992365(10), [167] 0.19923517(20), [153] 0.1994(2), [156] 0.199236(4) [179] 0.1198(3), [152] 0.1201635(10) [172] 0.120169(2) [179]
hcp 1212π / (3 2) = 0.7404800.1475450.195(5), [158] 0.1992555(10) [180] 0.1201640(10), [180] 0.119(2) [158]
La2−x Srx Cu O412120.19927(2) [181]
simple cubic with 2NN (same as fcc)12120.1991(1) [176]
simple cubic with NN+4NN 12 120.15040(12), [182] 0.1503793(7) [183] 0.1068263(7) [184]
simple cubic with 3NN+4NN 14 140.20490(12) [182] 0.1012133(7) [184]
bcc NN+2NN (= sc(3,4) sc-3NN+4NN)14140.175, [41] 0.1686,(20) [185] 0.1759432(8)0.0991(5), [185] 0.1012133(7), [45] 0.1759432(8) [45]
Nanotube fibers on FCC14140.1533(13) [186]
simple cubic with NN+3NN 14 140.1420(1) [176] 0.0920213(7) [184]
simple cubic with 2NN+4NN 18 180.15950(12) [182] 0.0751589(9) [184]
simple cubic with NN+2NN18180.137, [48] 0.136, [187] 0.1372(1), [176] 0.13735(5),[ citation needed ] 0.1373045(5) [45] 0.0752326(6) [184]
fcc with NN+2NN (=sc-2NN+4NN)18180.136, [41] 0.1361408(8) [45] 0.0751589(9) [45]
simple cubic with short-length correlation6+6+0.126(1) [188]
simple cubic with NN+3NN+4NN 20 200.11920(12) [182] 0.0624379(9) [184]
simple cubic with 2NN+3NN20200.1036(1) [176] 0.0629283(7) [184]
simple cubic with NN+2NN+4NN 24 240.11440(12) [182] 0.0533056(6) [184]
simple cubic with 2NN+3NN+4NN 26 260.11330(12) [182] 0.0474609(9)
simple cubic with NN+2NN+3NN26260.097, [41] 0.0976(1), [176] 0.0976445(10), 0.0976444(6) [45] 0.0497080(10) [184]
bcc with NN+2NN+3NN26260.095, [48] 0.0959084(6) [45] 0.0492760(10) [45]
simple cubic with NN+2NN+3NN+4NN 32 320.10000(12), [182] 0.0801171(9) [45] 0.0392312(8) [184]
fcc with NN+2NN+3NN42420.061, [48] 0.0610(5), [187] 0.0618842(8) [45] 0.0290193(7) [45]
fcc with NN+2NN+3NN+4NN54540.0500(5) [187]
sc-1,2,3,4,5 simple cubic with NN+2NN+3NN+4NN+5NN56560.0461815(5) [45] 0.0210977(7) [45]
sc-1,...,6 (2x2x2 cube [51] )80800.0337049(9), [45] 0.03373(13) [51] 0.0143950(10) [45]
sc-1,...,792920.0290800(10) [45] 0.0123632(8) [45]
sc-1,...,81221220.0218686(6) [45] 0.0091337(7) [45]
sc-1,...,91461460.0184060(10) [45] 0.0075532(8) [45]
sc-1,...,101701700.0064352(8) [45]
sc-1,...,111781780.0061312(8) [45]
sc-1,...,122022020.0053670(10) [45]
sc-1,...,132502500.0042962(8) [45]
3x3x3 cube274274φc= 0.76564(1), [52] pc = 0.0098417(7), [52] 0.009854(6) [51]
4x4x4 cube636636φc=0.76362(1), [52] pc = 0.0042050(2), [52] 0.004217(3) [51]
5x5x5 cube12141250φc=0.76044(2), [52] pc = 0.0021885(2), [52] 0.002185(4) [51]
6x6x6 cube205620560.001289(2) [51]

Filling factor = fraction of space filled by touching spheres at every lattice site (for systems with uniform bond length only). Also called Atomic Packing Factor.

Filling fraction (or Critical Filling Fraction) = filling factor * pc(site).

NN = nearest neighbor, 2NN = next-nearest neighbor, 3NN = next-next-nearest neighbor, etc.

kxkxk cubes are cubes of occupied sites on a lattice, and are equivalent to extended-range percolation of a cube of length (2k+1), with edges and corners removed, with z = (2k+1)3-12(2k-1)-9 (center site not counted in z).

Question: the bond thresholds for the hcp and fcc lattice agree within the small statistical error. Are they identical, and if not, how far apart are they? Which threshold is expected to be bigger? Similarly for the ice and diamond lattices. See [189]

Systempolymer Φc
percolating excluded volume of athermal polymer matrix (bond-fluctuation model on cubic lattice)0.4304(3) [190]

3D distorted lattices

Here, one distorts a regular lattice of unit spacing by moving vertices uniformly within the cube , and considers percolation when sites are within Euclidean distance of each other.

LatticeSite percolation thresholdBond percolation threshold
cubic0.051.00.60254(3) [191]
0.11.006250.58688(4) [191]
0.151.0250.55075(2) [191]
0.1751.050.50645(5) [191]
0.21.10.44342(3) [191]

Overlapping shapes on 3D lattices

Site threshold is the number of overlapping objects per lattice site. The coverage φc is the net fraction of sites covered, and v is the volume (number of cubes). Overlapping cubes are given in the section on thresholds of 3D lattices. Here z is the coordination number to k-mers of either orientation, with

SystemkzSite coverage φcSite percolation threshold pc
1 x 2 dimer, cubic lattice2560.24542 [51] 0.045847(2) [51]
1 x 3 trimer, cubic lattice31040.19578 [51] 0.023919(9) [51]
1 x 4 stick, cubic lattice41640.16055 [51] 0.014478(7) [51]
1 x 5 stick, cubic lattice52360.13488 [51] 0.009613(8) [51]
1 x 6 stick, cubic lattice63200.11569 [51] 0.006807(2) [51]
2 x 2 plaquette, cubic lattice20.22710 [51] 0.021238(2) [51]
3 x 3 plaquette, cubic lattice30.18686 [51] 0.007632(5) [51]
4 x 4 plaquette, cubic lattice40.16159 [51] 0.003665(3) [51]
5 x 5 plaquette, cubic lattice50.14316 [51] 0.002058(5) [51]
6 x 6 plaquette, cubic lattice60.12900 [51] 0.001278(5) [51]

The coverage is calculated from by for sticks, and for plaquettes.

Dimer percolation in 3D

SystemSite percolation thresholdBond percolation threshold
Simple cubic0.2555(1) [192]

Thresholds for 3D continuum models

All overlapping except for jammed spheres and polymer matrix.

SystemΦcηc
Spheres of radius r0.289, [193] 0.293, [194] 0.286, [195] 0.295. [101] 0.2895(5), [196] 0.28955(7), [197] 0.2896(7), [198] 0.289573(2), [199] 0.2896, [200] 0.2854, [201] 0.290, [202] 0.290 [203] 0.3418(7), [196] 0.3438(13), [204] 0.341889(3), [199] 0.3360, [201] 0.34189(2) [113] [corrected], 0.341935(8), [205] 0.335, [206]
Oblate ellipsoids with major radius r and aspect ratio 430.2831 [201] 0.3328 [201]
Prolate ellipsoids with minor radius r and aspect ratio 320.2757, [200] 0.2795, [201] 0.2763 [202] 0.3278 [201]
Oblate ellipsoids with major radius r and aspect ratio 20.2537, [200] 0.2629, [201] 0.254 [202] 0.3050 [201]
Prolate ellipsoids with minor radius r and aspect ratio 20.2537, [200] 0.2618, [201] 0.25(2), [207] 0.2507 [202] 0.3035, [201] 0.29(3) [207]
Oblate ellipsoids with major radius r and aspect ratio 30.2289 [201] 0.2599 [201]
Prolate ellipsoids with minor radius r and aspect ratio 30.2033, [200] 0.2244, [201] 0.20(2) [207] 0.2541, [201] 0.22(3) [207]
Oblate ellipsoids with major radius r and aspect ratio 40.2003 [201] 0.2235 [201]
Prolate ellipsoids with minor radius r and aspect ratio 40.1901, [201] 0.16(2) [207] 0.2108, [201] 0.17(3) [207]
Oblate ellipsoids with major radius r and aspect ratio 50.1757 [201] 0.1932 [201]
Prolate ellipsoids with minor radius r and aspect ratio 50.1627, [201] 0.13(2) [207] 0.1776, [201] 0.15(2) [207]
Oblate ellipsoids with major radius r and aspect ratio 100.0895, [200] 0.1058 [201] 0.1118 [201]
Prolate ellipsoids with minor radius r and aspect ratio 100.0724, [200] 0.08703, [201] 0.07(2) [207] 0.09105, [201] 0.07(2) [207]
Oblate ellipsoids with major radius r and aspect ratio 1000.01248 [201] 0.01256 [201]
Prolate ellipsoids with minor radius r and aspect ratio 1000.006949 [201] 0.006973 [201]
Oblate ellipsoids with major radius r and aspect ratio 10000.001275 [201] 0.001276 [201]
Oblate ellipsoids with major radius r and aspect ratio 20000.000637 [201] 0.000637 [201]
Spherocylinders with H/D = 10.2439(2) [198]
Spherocylinders with H/D = 40.1345(1) [198]
Spherocylinders with H/D = 100.06418(20) [198]
Spherocylinders with H/D = 500.01440(8) [198]
Spherocylinders with H/D = 1000.007156(50) [198]
Spherocylinders with H/D = 2000.003724(90) [198]
Aligned cylinders0.2819(2) [208] 0.3312(1) [208]
Aligned cubes of side 0.2773(2) [114] 0.27727(2), [52] 0.27730261(79) [168] 0.3247(3), [113] 0.3248(3), [114] 0.32476(4) [208] 0.324766(1) [168]
Randomly oriented icosahedra0.3030(5) [209]
Randomly oriented dodecahedra0.2949(5) [209]
Randomly oriented octahedra0.2514(6) [209]
Randomly oriented cubes of side 0.2168(2) [114] 0.2174, [200] 0.2444(3), [114] 0.2443(5) [209]
Randomly oriented tetrahedra0.1701(7) [209]
Randomly oriented disks of radius r (in 3D)0.9614(5) [210]
Randomly oriented square plates of side 0.8647(6) [210]
Randomly oriented triangular plates of side 0.7295(6) [210]
Jammed spheres (average z = 6)0.183(3), [211] 0.1990, [212] see also contact network of jammed spheres below. 0.59(1) [211] (volume fraction of all spheres)

is the total volume (for spheres), where N is the number of objects and L is the system size.

is the critical volume fraction, valid for overlapping randomly placed objects.

For disks and plates, these are effective volumes and volume fractions.

For void ("Swiss-Cheese" model), is the critical void fraction.

For more results on void percolation around ellipsoids and elliptical plates, see. [213]

For more ellipsoid percolation values see. [201]

For spherocylinders, H/D is the ratio of the height to the diameter of the cylinder, which is then capped by hemispheres. Additional values are given in. [198]

For superballs, m is the deformation parameter, the percolation values are given in., [214] [215] In addition, the thresholds of concave-shaped superballs are also determined in [121]

For cuboid-like particles (superellipsoids), m is the deformation parameter, more percolation values are given in. [200]

Void percolation in 3D

Void percolation refers to percolation in the space around overlapping objects. Here refers to the fraction of the space occupied by the voids (not of the particles) at the critical point, and is related to by . is defined as in the continuum percolation section above.

SystemΦcηc
Voids around disks of radius r22.86(2) [213]
Voids around randomly oriented tetrahedra0.0605(6) [216]
Voids around oblate ellipsoids of major radius r and aspect ratio 320.5308(7) [217] 0.6333 [217]
Voids around oblate ellipsoids of major radius r and aspect ratio 160.3248(5) [217] 1.125 [217]
Voids around oblate ellipsoids of major radius r and aspect ratio 101.542(1) [213]
Voids around oblate ellipsoids of major radius r and aspect ratio 80.1615(4) [217] 1.823 [217]
Voids around oblate ellipsoids of major radius r and aspect ratio 40.0711(2) [217] 2.643, [217] 2.618(5) [213]
Voids around oblate ellipsoids of major radius r and aspect ratio 23.239(4)  [213]
Voids around prolate ellipsoids of aspect ratio 80.0415(7) [218]
Voids around prolate ellipsoids of aspect ratio 60.0397(7) [218]
Voids around prolate ellipsoids of aspect ratio 40.0376(7) [218]
Voids around prolate ellipsoids of aspect ratio 30.03503(50) [218]
Voids around prolate ellipsoids of aspect ratio 20.0323(5) [218]
Voids around aligned square prisms of aspect ratio 20.0379(5) [219]
Voids around randomly oriented square prisms of aspect ratio 200.0534(4) [219]
Voids around randomly oriented square prisms of aspect ratio 150.0535(4) [219]
Voids around randomly oriented square prisms of aspect ratio 100.0524(5) [219]
Voids around randomly oriented square prisms of aspect ratio 80.0523(6) [219]
Voids around randomly oriented square prisms of aspect ratio 70.0519(3) [219]
Voids around randomly oriented square prisms of aspect ratio 60.0519(5) [219]
Voids around randomly oriented square prisms of aspect ratio 50.0515(7) [219]
Voids around randomly oriented square prisms of aspect ratio 40.0505(7) [219]
Voids around randomly oriented square prisms of aspect ratio 30.0485(11) [219]
Voids around randomly oriented square prisms of aspect ratio 5/20.0483(8) [219]
Voids around randomly oriented square prisms of aspect ratio 20.0465(7) [219]
Voids around randomly oriented square prisms of aspect ratio 3/20.0461(14) [219]
Voids around hemispheres0.0455(6) [220]
Voids around aligned tetrahedra0.0605(6) [216]
Voids around randomly oriented tetrahedra0.0605(6) [216]
Voids around aligned cubes0.036(1), [52] 0.0381(3) [216]
Voids around randomly oriented cubes0.0452(6), [216] 0.0449(5) [219]
Voids around aligned octahedra0.0407(3) [216]
Voids around randomly oriented octahedra0.0398(5) [216]
Voids around aligned dodecahedra0.0356(3) [216]
Voids around randomly oriented dodecahedra0.0360(3) [216]
Voids around aligned icosahedra0.0346(3) [216]
Voids around randomly oriented icosahedra0.0336(7) [216]
Voids around spheres0.034(7), [221] 0.032(4), [222] 0.030(2), [119] 0.0301(3), [223] 0.0294, [218] 0.0300(3), [224] 0.0317(4), [225] 0.0308(5) [220] 0.0301(1), [217] 0.0301(1) [216] 3.506(8), [224] 3.515(6), [213] 3.510(2) [105]

Thresholds on 3D random and quasi-lattices

LatticezSite percolation thresholdBond percolation threshold
Contact network of packed spheres60.310(5), [211] 0.287(50), [226] 0.3116(3), [212]
Random-plane tessellation, dual60.290(7) [227]
Icosahedral Penrose60.285 [228] 0.225 [228]
Penrose w/2 diagonals6.7640.271 [228] 0.207 [228]
Penrose w/8 diagonals12.7640.188 [228] 0.111 [228]
Voronoi network15.540.1453(20) [185] 0.0822(50) [185]

Thresholds for other 3D models

LatticezSite percolation thresholdCritical coverage fraction Bond percolation threshold
Drilling percolation, simple cubic lattice*660.6345(3), [229] 0.6339(5), [230] 0.633965(15) [231] 0.25480
Drill in z direction on cubic lattice, remove single sites660.592746 (columns), 0.4695(10) (sites) [232] 0.2784
Random tube model, simple cubic lattice0.231456(6) [233]
Pac-Man percolation, simple cubic lattice0.139(6) [234]

In drilling percolation, the site threshold represents the fraction of columns in each direction that have not been removed, and . For the 1d drilling, we have (columns) (sites).

In tube percolation, the bond threshold represents the value of the parameter such that the probability of putting a bond between neighboring vertical tube segments is , where is the overlap height of two adjacent tube segments. [233]

Thresholds in different dimensional spaces

Continuum models in higher dimensions

dSystemΦcηc
4Overlapping hyperspheres0.1223(4) [113] 0.1300(13), [204] 0.1304(5) [113]
4Aligned hypercubes0.1132(5), [113] 0.1132348(17) [168] 0.1201(6) [113]
4Voids around hyperspheres0.00211(2) [120] 6.161(10) [120] 6.248(2), [105]
5Overlapping hyperspheres0.0544(6), [204] 0.05443(7) [113]
5Aligned hypercubes0.04900(7), [113] 0.0481621(13) [168] 0.05024(7) [113]
5Voids around hyperspheres1.26(6)x10−4 [120] 8.98(4), [120] 9.170(8) [105]
6Overlapping hyperspheres0.02391(31), [204] 0.02339(5) [113]
6Aligned hypercubes0.02082(8), [113] 0.0213479(10) [168] 0.02104(8) [113]
6Voids around hyperspheres8.0(6)x10−6 [120] 11.74(8), [120] 12.24(2), [105]
7Overlapping hyperspheres0.01102(16), [204] 0.01051(3) [113]
7Aligned hypercubes0.00999(5), [113] 0.0097754(31) [168] 0.01004(5) [113]
7Voids around hyperspheres15.46(5) [105]
8Overlapping hyperspheres0.00516(8), [204] 0.004904(6) [113]
8Aligned hypercubes0.004498(5) [113]
8Voids around hyperspheres18.64(8) [105]
9Overlapping hyperspheres0.002353(4) [113]
9Aligned hypercubes0.002166(4) [113]
9Voids around hyperspheres22.1(4) [105]
10Overlapping hyperspheres0.001138(3) [113]
10Aligned hypercubes0.001058(4) [113]
11Overlapping hyperspheres0.0005530(3) [113]
11Aligned hypercubes0.0005160(3) [113]

In 4d, .

In 5d, .

In 6d, .

is the critical volume fraction, valid for overlapping objects.

For void models, is the critical void fraction, and is the total volume of the overlapping objects

Thresholds on hypercubic lattices

dzSite thresholdsBond thresholds
480.198(1) [235] 0.197(6), [236] 0.1968861(14), [237] 0.196889(3), [238] 0.196901(5), [239] 0.19680(23), [240] 0.1968904(65), [168] 0.19688561(3) [241] 0.1600(1), [242] 0.16005(15), [170] 0.1601314(13), [237] 0.160130(3), [238] 0.1601310(10), [171] 0.1601312(2), [243] 0.16013122(6) [241]
5100.141(1),0.198(1) [235] 0.141(3), [236] 0.1407966(15), [237] 0.1407966(26), [168] 0.14079633(4) [241] 0.1181(1), [242] 0.118(1), [244] 0.11819(4), [170] 0.118172(1), [237] 0.1181718(3) [171] 0.11817145(3) [241]
6120.106(1), [235] 0.108(3), [236] 0.109017(2), [237] 0.1090117(30), [168] 0.109016661(8) [241] 0.0943(1), [242] 0.0942(1), [245] 0.0942019(6), [237] 0.09420165(2) [241]
7140.05950(5), [245] 0.088939(20), [246] 0.0889511(9), [237] 0.0889511(90), [168] 0.088951121(1), [241] 0.0787(1), [242] 0.078685(30), [245] 0.0786752(3), [237] 0.078675230(2) [241]
8160.0752101(5), [237] 0.075210128(1) [241] 0.06770(5), [245] 0.06770839(7), [237] 0.0677084181(3) [241]
9180.0652095(3), [237] 0.0652095348(6) [241] 0.05950(5), [245] 0.05949601(5), [237] 0.0594960034(1) [241]
10200.0575930(1), [237] 0.0575929488(4) [241] 0.05309258(4), [237] 0.0530925842(2) [241]
11220.05158971(8), [237] 0.0515896843(2) [241] 0.04794969(1), [237] 0.04794968373(8) [241]
12240.04673099(6), [237] 0.0467309755(1) [241] 0.04372386(1), [237] 0.04372385825(10) [241]
13260.04271508(8), [237] 0.04271507960(10) [241] 0.04018762(1), [237] 0.04018761703(6) [241]

For thresholds on high dimensional hypercubic lattices, we have the asymptotic series expansions [236] [244] [247]

where . For 13-dimensional bond percolation, for example, the error with the measured value is less than 10−6, and these formulas can be useful for higher-dimensional systems.

Thresholds in other higher-dimensional lattices

dlatticezSite thresholdsBond thresholds
4diamond50.2978(2) [156] 0.2715(3) [156]
4kagome80.2715(3) [159] 0.177(1) [156]
4bcc160.1037(3) [156] 0.074(1), [156] 0.074212(1) [243]
4fcc, D4, hypercubic 2NN240.0842(3), [156] 0.08410(23), [240] 0.0842001(11) [179] 0.049(1), [156] 0.049517(1), [243] 0.0495193(8) [179]
4hypercubic NN+2NN320.06190(23), [240] 0.0617731(19) [248] 0.035827(1), [243] 0.0338047(27) [248]
4hypercubic 3NN320.04540(23) [240]
4hypercubic NN+3NN400.04000(23) [240] 0.0271892(22) [248]
4hypercubic 2NN+3NN560.03310(23) [240] 0.0194075(15) [248]
4hypercubic NN+2NN+3NN640.03190(23), [240] 0.0319407(13) [248] 0.0171036(11) [248]
4hypercubic NN+2NN+3NN+4NN880.0231538(12) [248] 0.0122088(8) [248]
4hypercubic NN+...+5NN1360.0147918(12) [248] 0.0077389(9) [248]
4hypercubic NN+...+6NN2320.0088400(10) [248] 0.0044656(11) [248]
4hypercubic NN+...+7NN2960.0070006(6) [248] 0.0034812(7) [248]
4hypercubic NN+...+8NN3200.0064681(9) [248] 0.0032143(8) [248]
4hypercubic NN+...+9NN4240.0048301(9) [248] 0.0024117(7) [248]
5diamond60.2252(3) [156] 0.2084(4) [159]
5kagome100.2084(4) [159] 0.130(2) [156]
5bcc320.0446(4) [156] 0.033(1) [156]
5fcc, D5, hypercubic 2NN400.0431(3), [156] 0.0435913(6) [179] 0.026(2), [156] 0.0271813(2) [179]
5hypercubic NN+2NN500.0334(2) [249] 0.0213(1) [249]
6diamond70.1799(5) [156] 0.1677(7) [159]
6kagome120.1677(7) [159]
6fcc, D6600.0252(5), [156] 0.02602674(12) [179] 0.01741556(5) [179]
6bcc640.0199(5) [156]
6E6 [179] 720.02194021(14) [179] 0.01443205(8) [179]
7fcc, D7840.01716730(5) [179] 0.012217868(13) [179]
7E7 [179] 1260.01162306(4) [179] 0.00808368(2) [179]
8fcc, D81120.01215392(4) [179] 0.009081804(6) [179]
8E8 [179] 2400.00576991(2) [179] 0.004202070(2) [179]
9fcc, D91440.00905870(2) [179] 0.007028457(3) [179]
9 [179] 2720.00480839(2) [179] 0.0037006865(11) [179]
10fcc, D101800.007016353(9) [179] 0.005605579(6) [179]
11fcc, D112200.005597592(4) [179] 0.004577155(3) [179]
12fcc, D122640.004571339(4) [179] 0.003808960(2) [179]
13fcc, D133120.003804565(3) [179] 0.0032197013(14) [179]

Thresholds in one-dimensional long-range percolation

Long-range bond percolation model. The lines represent the possible bonds with width decreasing as the connection probability decreases (left panel). An instance of the model together with the clusters generated (right panel). LR 1d clusters wiki.png
Long-range bond percolation model. The lines represent the possible bonds with width decreasing as the connection probability decreases (left panel). An instance of the model together with the clusters generated (right panel).

In a one-dimensional chain we establish bonds between distinct sites and with probability decaying as a power-law with an exponent . Percolation occurs [250] [251] at a critical value for . The numerically determined percolation thresholds are given by: [252]

Critical thresholds as a function of . [252]
The dotted line is the rigorous lower bound. [250]
0.10.047685(8) LR 1d percolation wiki.png
0.20.093211(16)
0.30.140546(17)
0.40.193471(15)
0.50.25482(5)
0.60.327098(6)
0.70.413752(14)
0.80.521001(14)
0.90.66408(7)

Thresholds on hyperbolic, hierarchical, and tree lattices

In these lattices there may be two percolation thresholds: the lower threshold is the probability above which infinite clusters appear, and the upper is the probability above which there is a unique infinite cluster.

Visualization of a triangular hyperbolic lattice {3,7} projected on the Poincare disk (red bonds). Green bonds show dual-clusters on the {7,3} lattice TriangularHyperbolic.jpg
Visualization of a triangular hyperbolic lattice {3,7} projected on the Poincaré disk (red bonds). Green bonds show dual-clusters on the {7,3} lattice
Depiction of the non-planar Hanoi network HN-NP Hn-np.jpg
Depiction of the non-planar Hanoi network HN-NP
LatticezSite percolation thresholdBond percolation threshold
LowerUpperLowerUpper
{3,7} hyperbolic770.26931171(7), [255] 0.20 [256] 0.73068829(7), [255] 0.73(2) [256] 0.20, [257] 0.1993505(5) [255] 0.37, [257] 0.4694754(8) [255]
{3,8} hyperbolic880.20878618(9) [255] 0.79121382(9) [255] 0.1601555(2) [255] 0.4863559(6) [255]
{3,9} hyperbolic990.1715770(1) [255] 0.8284230(1) [255] 0.1355661(4) [255] 0.4932908(1) [255]
{4,5} hyperbolic550.29890539(6) [255] 0.8266384(5) [255] 0.27, [257] 0.2689195(3) [255] 0.52, [257] 0.6487772(3) [255]
{4,6} hyperbolic660.22330172(3) [255] 0.87290362(7) [255] 0.20714787(9) [255] 0.6610951(2) [255]
{4,7} hyperbolic770.17979594(1) [255] 0.89897645(3) [255] 0.17004767(3) [255] 0.66473420(4) [255]
{4,8} hyperbolic880.151035321(9) [255] 0.91607962(7) [255] 0.14467876(3) [255] 0.66597370(3) [255]
{4,9} hyperbolic880.13045681(3) [255] 0.92820305(3) [255] 0.1260724(1) [255] 0.66641596(2) [255]
{5,5} hyperbolic550.26186660(5) [255] 0.89883342(7) [255] 0.263(10), [258] 0.25416087(3) [255] 0.749(10) [258] 0.74583913(3) [255]
{7,3} hyperbolic330.54710885(10) [255] 0.8550371(5), [255] 0.86(2) [256] 0.53, [257] 0.551(10), [258] 0.5305246(8) [255] 0.72, [257] 0.810(10), [258] 0.8006495(5) [255]
{∞,3} Cayley tree331212 [257] 1 [257]
Enhanced binary tree (EBT)0.304(1), [259] 0.306(10), [258] (13 − 3)/2 = 0.302776 [260] 0.48, [257] 0.564(1), [259] 0.564(10), [258] 12 [260]
Enhanced binary tree dual0.436(1), [259] 0.452(10) [258] 0.696(1), [259] 0.699(10) [258]
Non-Planar Hanoi Network (HN-NP)0.319445 [254] 0.381996 [254]
Cayley tree with grandparents80.158656326 [261]

Note: {m,n} is the Schläfli symbol, signifying a hyperbolic lattice in which n regular m-gons meet at every vertex

For bond percolation on {P,Q}, we have by duality . For site percolation, because of the self-matching of triangulated lattices.

Cayley tree (Bethe lattice) with coordination number

Thresholds for directed percolation

(1+1)D Kagome Lattice (1+1)D Kagome Lattice.png
(1+1)D Kagome Lattice
(1+1)D Square Lattice (1+1)D Square Lattice.png
(1+1)D Square Lattice
(1+1)D Triangular Lattice (1+1)D Triangular Lattice.png
(1+1)D Triangular Lattice
(2+1)D SC Lattice (2+1)D SC Lattice.png
(2+1)D SC Lattice
(2+1)D BCC Lattice (2+1)D BCC Lattice.png
(2+1)D BCC Lattice
LatticezSite percolation thresholdBond percolation threshold
(1+1)-d honeycomb1.50.8399316(2), [262] 0.839933(5), [263] of (1+1)-d sq.0.8228569(2), [262] 0.82285680(6) [262]
(1+1)-d kagome20.7369317(2), [262] 0.73693182(4) [264] 0.6589689(2), [262] 0.65896910(8) [262]
(1+1)-d square, diagonal20.705489(4), [265] 0.705489(4), [266] 0.70548522(4), [267] 0.70548515(20), [264] 0.7054852(3), [262] 0.644701(2), [268] 0.644701(1), [269] 0.644701(1), [265] 0.6447006(10), [263] 0.64470015(5), [270] 0.644700185(5), [267] 0.6447001(2), [262] 0.643(2) [271]
(1+1)-d triangular30.595646(3), [265] 0.5956468(5), [270] 0.5956470(3) [262] 0.478018(2), [265] 0.478025(1), [270] 0.4780250(4) [262] 0.479(3) [271]
(2+1)-d simple cubic, diagonal planes30.43531(1), [272] 0.43531411(10) [262] 0.382223(7), [272] 0.38222462(6) [262] 0.383(3) [271]
(2+1)-d square nn (= bcc)40.3445736(3), [273] 0.344575(15) [274] 0.3445740(2) [262] 0.2873383(1), [275] 0.287338(3) [272] 0.28733838(4) [262] 0.287(3) [271]
(2+1)-d fcc0.199(2)) [271]
(3+1)-d hypercubic, diagonal40.3025(10), [276] 0.30339538(5) [262] 0.26835628(5), [262] 0.2682(2) [271]
(3+1)-d cubic, nn60.2081040(4) [273] 0.1774970(5) [171]
(3+1)-d bcc80.160950(30), [274] 0.16096128(3) [262] 0.13237417(2) [262]
(4+1)-d hypercubic, diagonal50.23104686(3) [262] 0.20791816(2), [262] 0.2085(2) [271]
(4+1)-d hypercubic, nn80.1461593(2), [273] 0.1461582(3) [277] 0.1288557(5) [171]
(4+1)-d bcc160.075582(17), [274] 0.0755850(3), [277] 0.07558515(1) [262] 0.063763395(5) [262]
(5+1)-d hypercubic, diagonal60.18651358(2) [262] 0.170615155(5), [262] 0.1714(1) [271]
(5+1)-d hypercubic, nn100.1123373(2) [273] 0.1016796(5) [171]
(5+1)-d hypercubic bcc320.035967(23), [274] 0.035972540(3) [262] 0.0314566318(5) [262]
(6+1)-d hypercubic, diagonal70.15654718(1) [262] 0.145089946(3), [262] 0.1458 [271]
(6+1)-d hypercubic, nn120.0913087(2) [273] 0.0841997(14) [171]
(6+1)-d hypercubic bcc640.017333051(2) [262] 0.01565938296(10) [262]
(7+1)-d hypercubic, diagonal80.135004176(10) [262] 0.126387509(3), [262] 0.1270(1) [271]
(7+1)-d hypercubic,nn140.07699336(7) [273] 0.07195(5) [171]
(7+1)-d bcc1280.008 432 989(2) [262] 0.007 818 371 82(6) [262]

nn = nearest neighbors. For a (d + 1)-dimensional hypercubic system, the hypercube is in d dimensions and the time direction points to the 2D nearest neighbors.

Directed percolation with multiple neighbors

LatticezSite percolation thresholdBond percolation threshold
(1+1)-d square with 3 NN30.4395(3), [278]

Site-Bond Directed Percolation

p_b = bond threshold

p_s = site threshold

Site-bond percolation is equivalent to having different probabilities of connections:

P_0 = probability that no sites are connected

P_2 = probability that exactly one descendant is connected to the upper vertex (two connected together)

P_3 = probability that both descendants are connected to the original vertex (all three connected together)

Formulas:

P_0 = (1-p_s) + p_s(1-p_b)^2

P_2 = p_s p_b (1-p_b)

P_3 = p_s p_b^2

P_0 + 2P_2 + P_3 = 1

Latticezp_sp_bP_0P_2P_3
(1+1)-d square [279] 30.64470110.1262370.2290620.415639
0.70.935850.1483760.1965290.458567
0.750.885650.1697030.1660590.498178
0.80.841350.1923040.1346160.538464
0.850.801900.2161430.1022420.579373
0.90.766450.2412150.0689810.620825
0.950.734500.2673360.0348890.662886
10.7054890.29451100.705489

Exact critical manifolds of inhomogeneous systems

Inhomogeneous triangular lattice bond percolation [20]

Inhomogeneous honeycomb lattice bond percolation = kagome lattice site percolation [20]

Inhomogeneous (3,12^2) lattice, site percolation [7] [280]

or

Inhomogeneous union-jack lattice, site percolation with probabilities [281]

Inhomogeneous martini lattice, bond percolation [73] [282]

Inhomogeneous martini lattice, site percolation. r = site in the star

Inhomogeneous martini-A (3–7) lattice, bond percolation. Left side (top of "A" to bottom): . Right side: . Cross bond: .

Inhomogeneous martini-B (3–5) lattice, bond percolation

Inhomogeneous martini lattice with outside enclosing triangle of bonds, probabilities from inside to outside, bond percolation [282]

Inhomogeneous checkerboard lattice, bond percolation [57] [93]

Inhomogeneous bow-tie lattice, bond percolation [56] [93]

where are the four bonds around the square and is the diagonal bond connecting the vertex between bonds and .

See also

Related Research Articles

<span class="mw-page-title-main">Percolation theory</span> Mathematical theory on behavior of connected clusters in a random graph

In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles Network theory and Percolation.

In statistical mechanics, a universality class is a collection of mathematical models which share a single scale-invariant limit under the process of renormalization group flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents will be the same for all models in the class.

Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems at thermal equilibrium, the critical exponents depend only on:

In physics, the Tsallis entropy is a generalization of the standard Boltzmann–Gibbs entropy. It is proportional to the expectation of the q-logarithm of a distribution.

<span class="mw-page-title-main">Wigner crystal</span> Solid (crystalline) phase of electrons

A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934. A gas of electrons moving in a uniform, inert, neutralizing background will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important. To minimize the potential energy, the electrons form a bcc lattice in 3D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed. A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. However, it is still not clear whether it is the Wigner crystallization that has led to observation of insulating behaviour in magnetotransport measurements on 2D electron systems, since other candidates are present, such as Anderson localization.

The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice. It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid. The model was introduced by Gersch and Knollman in 1963 in the context of granular superconductors. The model rose to prominence in the 1980s after it was found to capture the essence of the superfluid-insulator transition in a way that was much more mathematically tractable than fermionic metal-insulator models.

<span class="mw-page-title-main">Community structure</span> Concept in graph theory

In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But overlapping communities are also allowed. The more general definition is based on the principle that pairs of nodes are more likely to be connected if they are both members of the same community(ies), and less likely to be connected if they do not share communities. A related but different problem is community search, where the goal is to find a community that a certain vertex belongs to.

In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.

In particle physics, hexaquarks, alternatively known as sexaquarks, are a large family of hypothetical particles, each particle consisting of six quarks or antiquarks of any flavours. Six constituent quarks in any of several combinations could yield a colour charge of zero; for example a hexaquark might contain either six quarks, resembling two baryons bound together, or three quarks and three antiquarks. Once formed, dibaryons are predicted to be fairly stable by the standards of particle physics.

In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

<span class="mw-page-title-main">Epidemic models on lattices</span>

Classic epidemic models of disease transmission are described in Compartmental models in epidemiology. Here we discuss the behavior when such models are simulated on a lattice. Lattice models, which were first explored in the context of cellular automata, act as good first approximations of more complex spatial configurations, although they do not reflect the heterogeneity of space. Lattice-based epidemic models can also be implemented as fixed agent-based models.

The SP formula for the dephasing rate of a particle that moves in a fluctuating environment unifies various results that have been obtained, notably in condensed matter physics, with regard to the motion of electrons in a metal. The general case requires to take into account not only the temporal correlations but also the spatial correlations of the environmental fluctuations. These can be characterized by the spectral form factor , while the motion of the particle is characterized by its power spectrum . Consequently, at finite temperature the expression for the dephasing rate takes the following form that involves S and P functions:

<span class="mw-page-title-main">Light front holography</span> Technique used to determine mass of hadrons

In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; It is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.

<span class="mw-page-title-main">Water retention on random surfaces</span> Study of water distribution

Water retention on random surfaces is the simulation of catching of water in ponds on a surface of cells of various heights on a regular array such as a square lattice, where water is rained down on every cell in the system. The boundaries of the system are open and allow water to flow out. Water will be trapped in ponds, and eventually all ponds will fill to their maximum height, with any additional water flowing over spillways and out the boundaries of the system. The problem is to find the amount of water trapped or retained for a given surface. This has been studied extensively for random surfaces.

Double ionization is a process of formation of doubly charged ions when laser radiation is exerted on neutral atoms or molecules. Double ionization is usually less probable than single-electron ionization. Two types of double ionization are distinguished: sequential and non-sequential.

<span class="mw-page-title-main">Jaynes–Cummings–Hubbard model</span> Model in quantum optics

The Jaynes–Cummings–Hubbard (JCH) model is a many-body quantum system modeling the quantum phase transition of light. As the name suggests, the Jaynes–Cummings–Hubbard model is a variant on the Jaynes–Cummings model; a one-dimensional JCH model consists of a chain of N coupled single-mode cavities, each with a two-level atom. Unlike in the competing Bose–Hubbard model, Jaynes–Cummings–Hubbard dynamics depend on photonic and atomic degrees of freedom and hence require strong-coupling theory for treatment. One method for realizing an experimental model of the system uses circularly-linked superconducting qubits.

<span class="mw-page-title-main">Global cascades model</span>

Global cascades models are a class of models aiming to model large and rare cascades that are triggered by exogenous perturbations which are relatively small compared with the size of the system. The phenomenon occurs ubiquitously in various systems, like information cascades in social systems, stock market crashes in economic systems, and cascading failure in physics infrastructure networks. The models capture some essential properties of such phenomenon.

Robustness, the ability to withstand failures and perturbations, is a critical attribute of many complex systems including complex networks.

<span class="mw-page-title-main">Random sequential adsorption</span>

Random sequential adsorption (RSA) refers to a process where particles are randomly introduced in a system, and if they do not overlap any previously adsorbed particle, they adsorb and remain fixed for the rest of the process. RSA can be carried out in computer simulation, in a mathematical analysis, or in experiments. It was first studied by one-dimensional models: the attachment of pendant groups in a polymer chain by Paul Flory, and the car-parking problem by Alfréd Rényi. Other early works include those of Benjamin Widom. In two and higher dimensions many systems have been studied by computer simulation, including in 2d, disks, randomly oriented squares and rectangles, aligned squares and rectangles, various other shapes, etc.

References

  1. Stauffer, Dietrich; Aharony, Amnon (2003). Introduction to percolation theory (Rev. 2nd ed.). London: Taylor & Francis. ISBN   978-0-7484-0253-3.
  2. Kasteleyn, P. W.; Fortuin, C. M. (1969). "Phase transitions in lattice systems with random local properties". Journal of the Physical Society of Japan Supplement. 26: 11–14. Bibcode:1969JPSJS..26...11K.
  3. 1 2 3 4 5 Grünbaum, Branko & Shephard, G. C. (1987). Tilings and Patterns . New York: W. H. Freeman. ISBN   978-0-7167-1193-3.
  4. Berchenko, Yakir; Artzy-Randrup, Yael; Teicher, Mina; Stone, Lewi (March 30, 2009). "Emergence and Size of the Giant Component in Clustered Random Graphs with a Given Degree Distribution". Physical Review Letters. 102 (13): 138701. Bibcode:2009PhRvL.102m8701B. doi:10.1103/PhysRevLett.102.138701. ISSN   0031-9007. PMID   19392410.
  5. Li, Ming; Liu, Run-Ran; Lü, Linyuan; Hu, Mao-Bin; Xu, Shuqi; Zhang, Yi-Cheng (April 25, 2021). "Percolation on complex networks: Theory and application". Physics Reports. 907: 1–68. arXiv: 2101.11761 . Bibcode:2021PhR...907....1L. doi:10.1016/j.physrep.2020.12.003. ISSN   0370-1573. S2CID   231719831.
  6. 1 2 3 4 5 6 7 Parviainen, Robert (2005). Connectivity Properties of Archimedean and Laves Lattices. Vol. 34. Uppsala Dissertations in Mathematics. p. 37. ISBN   978-91-506-1751-1.
  7. 1 2 3 4 5 6 7 8 9 Suding, P. N.; R. M. Ziff (1999). "Site percolation thresholds for Archimedean lattices". Physical Review E. 60 (1): 275–283. Bibcode:1999PhRvE..60..275S. doi:10.1103/PhysRevE.60.275. PMID   11969760.
  8. 1 2 3 4 5 6 7 Parviainen, Robert (2007). "Estimation of bond percolation thresholds on the Archimedean lattices". Journal of Physics A. 40 (31): 9253–9258. arXiv: 0704.2098 . Bibcode:2007JPhA...40.9253P. doi:10.1088/1751-8113/40/31/005. S2CID   680787.
  9. 1 2 3 4 5 6 7 8 9 Ding, Chengxiang; Zhe Fu. Wenan Guo; F. Y. Wu (2010). "Critical frontier for the Potts and percolation models on triangular-type and kagome-type lattices II: Numerical analysis". Physical Review E. 81 (6): 061111. arXiv: 1001.1488 . Bibcode:2010PhRvE..81f1111D. doi:10.1103/PhysRevE.81.061111. PMID   20866382. S2CID   29625353.
  10. 1 2 Scullard, C. R.; J. L. Jacobsen (2012). "Transfer matrix computation of generalised critical polynomials in percolation". arXiv: 1209.1451 [cond-mat.stat-mech].
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Jacobsen, J. L. (2014). "High-precision percolation thresholds and Potts-model critical manifolds from graph polynomials". Journal of Physics A. 47 (13): 135001. arXiv: 1401.7847 . Bibcode:2014JPhA...47m5001G. doi:10.1088/1751-8113/47/13/135001. S2CID   119614758.
  12. 1 2 Jacobsen, Jesper L.; Christian R. Scullard (2013). "Critical manifolds, graph polynomials, and exact solvability" (PDF). StatPhys 25, Seoul, Korea July 21–26.
  13. 1 2 3 4 5 6 7 8 Scullard, Christian R.; Jesper Lykke Jacobsen (2020). "Bond percolation thresholds on Archimedean lattices from critical polynomial roots". Physical Review Research. 2 (1): 012050. arXiv: 1910.12376 . Bibcode:2020PhRvR...2a2050S. doi:10.1103/PhysRevResearch.2.012050. S2CID   204904858.
  14. 1 2 3 4 5 d'Iribarne, C.; Rasigni, M.; Rasigni, G. (1995). "Determination of site percolation transitions for 2D mosaics by means of the minimal spanning tree approach". Physics Letters A. 209 (1–2): 95–98. Bibcode:1995PhLA..209...95D. doi:10.1016/0375-9601(95)00794-8.
  15. 1 2 3 4 5 6 7 8 9 10 d'Iribarne, C.; Rasigni, M.; Rasigni, G. (1999). "From lattice long-range percolation to the continuum one". Phys. Lett. A. 263 (1–2): 65–69. Bibcode:1999PhLA..263...65D. doi:10.1016/S0375-9601(99)00585-X.
  16. 1 2 Schliecker, G.; C. Kaiser (1999). "Percolation on disordered mosaics". Physica A. 269 (2–4): 189–200. Bibcode:1999PhyA..269..189S. doi:10.1016/S0378-4371(99)00093-X.
  17. Djordjevic, Z. V.; H. E. Stanley; Alla Margolina (1982). "Site percolation threshold for honeycomb and square lattices". Journal of Physics A. 15 (8): L405–L412. Bibcode:1982JPhA...15L.405D. doi:10.1088/0305-4470/15/8/006.
  18. 1 2 3 4 5 Feng, Xiaomei; Youjin Deng; H. W. J. Blöte (2008). "Percolation transitions in two dimensions". Physical Review E. 78 (3): 031136. arXiv: 0901.1370 . Bibcode:2008PhRvE..78c1136F. doi:10.1103/PhysRevE.78.031136. PMID   18851022. S2CID   29282598.
  19. 1 2 3 4 5 6 7 Ziff, R. M.; Hang Gu (2008). "Universal condition for critical percolation thresholds of kagomé-like lattices". Physical Review E. 79 (2): 020102. arXiv: 0812.0181 . doi:10.1103/PhysRevE.79.020102. PMID   19391694. S2CID   18051122.
  20. 1 2 3 4 5 Sykes, M. F.; J. W. Essam (1964). "Exact critical percolation probabilities for site and bond problems in two dimensions". Journal of Mathematical Physics. 5 (8): 1117–1127. Bibcode:1964JMP.....5.1117S. doi:10.1063/1.1704215.
  21. Ziff, R. M.; P. W. Suding (1997). "Determination of the bond percolation threshold for the kagome lattice". Journal of Physics A. 30 (15): 5351–5359. arXiv: cond-mat/9707110 . Bibcode:1997JPhA...30.5351Z. doi:10.1088/0305-4470/30/15/021. S2CID   28814369.
  22. Scullard, C. R. (2012). "Percolation critical polynomial as a graph invariant". Physical Review E. 86 (4): 1131. arXiv: 1111.1061 . Bibcode:2012PhRvE..86d1131S. doi:10.1103/PhysRevE.86.041131. PMID   23214553. S2CID   33348328.
  23. 1 2 Jacobsen, J. L. (2015). "Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley-Lieb algebras". Journal of Physics A. 48 (45): 454003. arXiv: 1507.03027 . Bibcode:2015JPhA...48S4003L. doi:10.1088/1751-8113/48/45/454003. S2CID   119146630.
  24. Lin, Keh Ying; Wen Jong Ma (1983). "Two-dimensional Ising model on a ruby lattice". Journal of Physics A. 16 (16): 3895–3898. Bibcode:1983JPhA...16.3895L. doi:10.1088/0305-4470/16/16/027.
  25. Derrida, B.; D. Stauffer (1985). "Corrections to scaling and phenomenological renormalization for 2-dimensional percolation and lattice animal problems" (PDF). Journal de Physique. 46 (45): 1623. doi:10.1051/jphys:0198500460100162300. S2CID   8289499.
  26. Yang, Y.; S. Zhou.; Y. Li. (2013). "Square++: Making a connection game win-lose complementary and playing-fair". Entertainment Computing. 4 (2): 105–113. doi:10.1016/j.entcom.2012.10.004.
  27. Newman, M. E. J.; R. M. Ziff (2000). "Efficient Monte-Carlo algorithm and high-precision results for percolation". Physical Review Letters. 85 (19): 4104–7. arXiv: cond-mat/0005264 . Bibcode:2000PhRvL..85.4104N. CiteSeerX   10.1.1.310.4632 . doi:10.1103/PhysRevLett.85.4104. PMID   11056635. S2CID   747665.
  28. Mertens, Stephan (2022). "Exact site-percolation probability on the square lattice". Journal of Physics A: Mathematical and Theoretical. 55 (33): 334002. arXiv: 2109.12102 . Bibcode:2022JPhA...55G4002M. doi:10.1088/1751-8121/ac4195. ISSN   1751-8113.
  29. de Oliveira, P.M.C.; R. A. Nobrega; D. Stauffer (2003). "Corrections to finite size scaling in percolation". Brazilian Journal of Physics. 33 (3): 616–618. arXiv: cond-mat/0308525 . Bibcode:2003BrJPh..33..616O. doi:10.1590/S0103-97332003000300025. S2CID   8972025.
  30. Lee, M. J. (2007). "Complementary algorithms for graphs and percolation". Physical Review E. 76 (2): 027702. arXiv: 0708.0600 . Bibcode:2007PhRvE..76b7702L. doi:10.1103/PhysRevE.76.027702. PMID   17930184. S2CID   304257.
  31. Lee, M. J. (2008). "Pseudo-random-number generators and the square site percolation threshold". Physical Review E. 78 (3): 031131. arXiv: 0807.1576 . Bibcode:2008PhRvE..78c1131L. doi:10.1103/PhysRevE.78.031131. PMID   18851017. S2CID   7027694.
  32. Levenshteĭn, M. E.; B. I. Shklovskiĭ; M. S. Shur; A. L. Éfros (1975). "The relation between the critical exponents of percolation theory". Zh. Eksp. Teor. Fiz. 69: 386–392. Bibcode:1975JETP...42..197L.
  33. Dean, P.; Bird, N. F. (1967). "Monte Carlo estimates of critical percolation probabilities". Mathematical Proceedings of the Cambridge Philosophical Society . 63 (2): 477–479. Bibcode:1967PCPS...63..477D. doi:10.1017/s0305004100041438. S2CID   137386357.
  34. Dean, P. (1963). "A new Monte Carlo method for percolation problems on a lattice". Mathematical Proceedings of the Cambridge Philosophical Society . 59 (2): 397–410. Bibcode:1963PCPS...59..397D. doi:10.1017/s0305004100037026. S2CID   122985645.
  35. Tencer, John; Forsberg, Kelsey Meeks (2021). "Postprocessing techniques for gradient percolation predictions on the square lattice". Physical Review E. 103 (1): 012115. Bibcode:2021PhRvE.103a2115T. doi:10.1103/PhysRevE.103.012115. OSTI   1778027. PMID   33601521. S2CID   231961701.
  36. Betts, D. D. (1995). "A new two-dimensional lattice of coordination number five". Proc. Nova Scotian Inst. Sci. 40: 95–100. hdl:10222/35332.
  37. 1 2 d'Iribarne, C.; Rasigni, M.; Rasigni, G. (1999). "Minimal spanning tree and percolation on mosaics: graph theory and percolation". J. Phys. A: Math. Gen. 32 (14): 2611–2622. Bibcode:1999JPhA...32.2611D. doi:10.1088/0305-4470/32/14/002.
  38. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 van der Marck, Steven C. (1997). "Percolation thresholds and universal formulas". Physical Review E. 55 (2): 1514–1517. Bibcode:1997PhRvE..55.1514V. doi:10.1103/PhysRevE.55.1514.
  39. 1 2 3 4 5 6 Malarz, K.; S. Galam (2005). "Square-lattice site percolation at increasing ranges of neighbor bonds". Physical Review E. 71 (1): 016125. arXiv: cond-mat/0408338 . Bibcode:2005PhRvE..71a6125M. doi:10.1103/PhysRevE.71.016125. PMID   15697676. S2CID   119087463.
  40. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Majewski, M.; K. Malarz (2007). "Square lattice site percolation thresholds for complex neighbourhoods". Acta Phys. Pol. B. 38 (38): 2191. arXiv: cond-mat/0609635 . Bibcode:2007AcPPB..38.2191M.
  41. 1 2 3 4 5 6 7 8 9 10 Dalton, N. W.; C. Domb; M. F. Sykes (1964). "Dependence of critical concentration of a dilute ferromagnet on the range of interaction". Proc. Phys. Soc. 83 (3): 496–498. doi:10.1088/0370-1328/83/3/118.
  42. Collier, Andrew. "Percolation Threshold: Including Next-Nearest Neighbours".
  43. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ouyang, Yunqing; Y. Deng; Henk W. J. Blöte (2018). "Equivalent-neighbor percolation models in two dimensions: Crossover between mean-field and short-range behavior". Physical Review E. 98 (6): 062101. arXiv: 1808.05812 . Bibcode:2018PhRvE..98f2101O. doi:10.1103/PhysRevE.98.062101. S2CID   119328197.
  44. 1 2 Xu, Wenhui; Junfeng Wang; Hao Hu; Youjin Deng (2021). "Critical polynomials in the nonplanar and continuum percolation models". Physical Review E. 103 (2): 022127. arXiv: 2010.02887 . Bibcode:2021PhRvE.103b2127X. doi:10.1103/PhysRevE.103.022127. ISSN   2470-0045. PMID   33736116. S2CID   222140792.
  45. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Xun, Zhipeng; DaPeng Hao; Robert M. Ziff (2022). "Site and bond percolation thresholds on regular lattices with compact extended-range neighborhoods in two and three dimensions". Physical Review E. 105 (2): 024105. arXiv: 2111.10975 . Bibcode:2022PhRvE.105b4105X. doi:10.1103/PhysRevE.105.024105. PMID   35291074. S2CID   244478657.
  46. 1 2 3 4 5 6 7 Malarz, Krzysztop (2021). "Percolation thresholds on a triangular lattice for neighborhoods containing sites up to the fifth coordination zone". Physical Review E. 103 (5): 052107. arXiv: 2102.10066 . Bibcode:2021PhRvE.103e2107M. doi:10.1103/PhysRevE.103.052107. PMID   34134312. S2CID   231979514.
  47. 1 2 3 4 5 6 7 Malarz, Krzysztof (2020). "Site percolation thresholds on triangular lattice with complex neighborhoods". Chaos: An Interdisciplinary Journal of Nonlinear Science. 30 (12): 123123. arXiv: 2006.15621 . Bibcode:2020Chaos..30l3123M. doi:10.1063/5.0022336. PMID   33380057. S2CID   220250058.
  48. 1 2 3 4 5 6 Domb, C.; N. W. Dalton (1966). "Crystal statistics with long-range forces I. The equivalent neighbour model". Proc. Phys. Soc. 89 (4): 859–871. Bibcode:1966PPS....89..859D. doi:10.1088/0370-1328/89/4/311.
  49. 1 2 3 4 5 Gouker, Mark; Family, Fereydoon (1983). "Evidence for classical critical behavior in long-range site percolation". Physical Review B. 28 (3): 1449. Bibcode:1983PhRvB..28.1449G. doi:10.1103/PhysRevB.28.1449.
  50. Malarz, Krzysztof (2022). "Random site percolation on honeycomb lattices with complex neighborhoods". Chaos: An Interdisciplinary Journal of Nonlinear Science. 32 (8): 083123. arXiv: 2204.12593 . doi:10.1063/5.0099066. PMID   36049902. S2CID   248405741.
  51. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Mecke, K. R.; Seyfried, A (2002). "Strong dependence of percolation thresholds on polydispersity". Europhysics Letters (EPL). 58 (1): 28–34. Bibcode:2002EL.....58...28M. doi:10.1209/epl/i2002-00601-y. S2CID   250737562.
  52. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Koza, Zbigniew; Kondrat, Grzegorz; Suszczyński, Karol (2014). "Percolation of overlapping squares or cubes on a lattice". Journal of Statistical Mechanics: Theory and Experiment. 2014 (11): P11005. arXiv: 1606.07969 . Bibcode:2014JSMTE..11..005K. doi:10.1088/1742-5468/2014/11/P11005. S2CID   118623466.
  53. 1 2 3 Deng, Youjin; Yunqing Ouyang; Henk W. J. Blöte (2019). "Medium-range percolation in two dimensions". J. Phys.: Conf. Ser. 1163 (1): 012001. Bibcode:2019JPhCS1163a2001D. doi: 10.1088/1742-6596/1163/1/012001 . hdl: 1887/82550 .
  54. 1 2 3 Mitra, S.; D. Saha; A. Sensharma (2019). "Percolation in a distorted square lattice". Physical Review E. 99 (1): 012117. arXiv: 1808.10665 . Bibcode:2019PhRvE..99a2117M. doi:10.1103/PhysRevE.99.012117. PMID   30780325.
  55. 1 2 3 4 5 6 Jasna, C. K.; V. Sasidevan (2023). "Effect of shape asymmetry on percolation of aligned and overlapping objects on lattices". Preprint. arXiv: 2308.12932 .
  56. 1 2 3 4 Scullard, C. R.; R. M. Ziff (2010). "Critical surfaces for general inhomogeneous bond percolation problems". Journal of Statistical Mechanics: Theory and Experiment. 2010 (3): P03021. arXiv: 0911.2686 . Bibcode:2010JSMTE..03..021S. doi:10.1088/1742-5468/2010/03/P03021. S2CID   119230786.
  57. 1 2 Wu, F. Y. (1979). "Critical point of planar Potts models". Journal of Physics C. 12 (17): L645–L650. Bibcode:1979JPhC...12L.645W. doi:10.1088/0022-3719/12/17/002.
  58. 1 2 Mai, T.; Halley, J. W. (1980). Sinha, S. K. (ed.). Ordering in two dimensions. North-Holland, Amsterdam. pp. 369–371.
  59. 1 2 3 4 5 6 7 8 9 10 Kundu, Sumanta; Manna, S. S. (May 15, 2017). "Colored percolation". Physical Review E. 95 (5). arXiv: 1709.00887 . doi:10.1103/PhysRevE.95.052124. ISSN   2470-0045.
  60. Nakanishi, H (1987). "Critical behaviour of AB percolation in two dimensions". Journal of Physics A: Mathematical and General. 20 (17): 6075–6083. doi:10.1088/0305-4470/20/17/040. ISSN   0305-4470.
  61. Debierre, J -M; Bradley, R M (1992). "Scaling properties of antipercolation hulls on the triangular lattice". Journal of Physics A: Mathematical and General. 25 (2): 335–343. doi:10.1088/0305-4470/25/2/014. ISSN   0305-4470.
  62. Wu, Xian-Yuan; Popov, S. Yu. (2003). "On AB Bond Percolation on the Square Lattice and AB Site Percolation on Its Line Graph". Journal of Statistical Physics. 110 (1/2): 443–449. doi:10.1023/A:1021091316925.
  63. 1 2 3 4 5 6 7 Hovi, J.-P.; A. Aharony (1996). "Scaling and universality in the spanning probability for percolation". Physical Review E. 53 (1): 235–253. Bibcode:1996PhRvE..53..235H. doi:10.1103/PhysRevE.53.235. PMID   9964253.
  64. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Tarasevich, Yuriy Yu; Steven C. van der Marck (1999). "An investigation of site-bond percolation on many lattices". Int. J. Mod. Phys. C. 10 (7): 1193–1204. arXiv: cond-mat/9906078 . Bibcode:1999IJMPC..10.1193T. doi:10.1142/S0129183199000978. S2CID   16917458.
  65. 1 2 3 4 5 6 7 8 9 10 González-Flores, M. I.; A. A. Torres; W. Lebrecht; A. J. Ramirez-Pastor (2021). "Site-bond percolation in two-dimensional kagome lattices: Analytical approach and numerical simulations". Physical Review E. 104 (1): 014130. Bibcode:2021PhRvE.104a4130G. doi:10.1103/PhysRevE.104.014130. PMID   34412224. S2CID   237243188.
  66. 1 2 3 4 5 Sakamoto, S.; F. Yonezawa; M. Hori (1989). "A proposal for the estimation of percolation thresholds in two-dimensional lattices". J. Phys. A. 22 (14): L699–L704. Bibcode:1989JPhA...22L.699S. doi:10.1088/0305-4470/22/14/009.
  67. Deng, Y.; Y. Huang; J. L. Jacobsen; J. Salas; A. D. Sokal (2011). "Finite-temperature phase transition in a class of four-state Potts antiferromagnets". Physical Review Letters. 107 (15): 150601. arXiv: 1108.1743 . Bibcode:2011PhRvL.107o0601D. doi:10.1103/PhysRevLett.107.150601. PMID   22107278. S2CID   31777818.
  68. Syozi, I (1972). "Transformation of Ising Models". In Domb, C.; Green, M. S. (eds.). Phase Transitions in Critical Phenomena. Vol. 1. Academic Press, London. pp. 270–329.
  69. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Neher, Richard; Mecke, Klaus; Wagner, Herbert (2008). "Topological estimation of percolation thresholds". Journal of Statistical Mechanics: Theory and Experiment. 2008 (1): P01011. arXiv: 0708.3250 . Bibcode:2008JSMTE..01..011N. doi:10.1088/1742-5468/2008/01/P01011. S2CID   8584164.
  70. Grimmett, G.; Manolescu, I (2012). "Bond percolation on isoradial graphs: Criticality and universality". Probability Theory and Related Fields. 159 (1–2): 273–327. arXiv: 1204.0505 . doi:10.1007/s00440-013-0507-y. S2CID   15031903.
  71. 1 2 Scullard, C. R. (2006). "Exact site percolation thresholds using a site-to-bond transformation and the star-triangle transformation". Physical Review E. 73 (1): 016107. arXiv: cond-mat/0507392 . Bibcode:2006PhRvE..73a6107S. doi:10.1103/PhysRevE.73.016107. PMID   16486216. S2CID   17948429.
  72. 1 2 3 4 Ziff, R. M. (2006). "Generalized cell–dual-cell transformation and exact thresholds for percolation". Physical Review E. 73 (1): 016134. Bibcode:2006PhRvE..73a6134Z. doi:10.1103/PhysRevE.73.016134. PMID   16486243.
  73. 1 2 3 4 5 6 7 8 9 10 11 12 13 Scullard, C. R.; Robert M Ziff (2006). "Exact bond percolation thresholds in two dimensions". Journal of Physics A. 39 (49): 15083–15090. arXiv: cond-mat/0610813 . Bibcode:2006JPhA...3915083Z. doi:10.1088/0305-4470/39/49/003. S2CID   14332146.
  74. Ding, Chengxiang; Yancheng Wang; Yang Li (2012). "Potts and percolation models on bowtie lattices". Physical Review E. 86 (2): 021125. arXiv: 1203.2244 . Bibcode:2012PhRvE..86b1125D. doi:10.1103/PhysRevE.86.021125. PMID   23005740. S2CID   27190130.
  75. Wierman, John (1984). "A bond percolation critical probability determination based on the star-triangle transformation". J. Phys. A: Math. Gen. 17 (7): 1525–1530. Bibcode:1984JPhA...17.1525W. doi:10.1088/0305-4470/17/7/020.
  76. Mahmood Maher al-Naqsh (1983). "MAH 007". The Design and Execution of Drawings in Iranian Tilework. Archived from the original on January 9, 2017. Retrieved November 18, 2019.
  77. "Western tomb tower, Kharraqan".
  78. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Melchert, Oliver; Helmut G. Katzgraber; Mark A. Novotny (2016). "Site and bond percolation thresholds in Kn,n-based lattices: Vulnerability of quantum annealers to random qubit and coupler failures on Chimera topologies". Physical Review E. 93 (4): 042128. arXiv: 1511.07078 . Bibcode:2016PhRvE..93d2128M. doi:10.1103/PhysRevE.93.042128. PMID   27176275. S2CID   206249608.
  79. Okubo, S.; M. Hayashi; S. Kimura; H. Ohta; M. Motokawa; H. Kikuchi; H. Nagasawa (1998). "Submillimeter wave ESR of triangular-kagome antiferromagnet Cu9X2(cpa)6 (X=Cl, Br)". Physica B. 246–247 (2): 553–556. Bibcode:1998PhyB..246..553O. doi:10.1016/S0921-4526(97)00985-X.
  80. 1 2 3 4 5 6 7 8 9 10 11 Haji Akbari, Amir; R. M. Ziff (2009). "Percolation in networks with voids and bottlenecks". Physical Review E. 79 (2): 021118. arXiv: 0811.4575 . Bibcode:2009PhRvE..79b1118H. doi:10.1103/PhysRevE.79.021118. PMID   19391717. S2CID   2554311.
  81. 1 2 Cornette, V.; A. J. Ramirez-Pastor; F. Nieto (2003). "Dependence of the percolation threshold on the size of the percolating species". Physica A. 327 (1): 71–75. Bibcode:2003PhyA..327...71C. doi:10.1016/S0378-4371(03)00453-9. hdl: 11336/138178 .
  82. 1 2 3 Lebrecht, W.; P. M. Centres; A. J. Ramirez-Pastor (2019). "Analytical approximation of the site percolation thresholds for monomers and dimers on two-dimensional lattices". Physica A. 516: 133–143. Bibcode:2019PhyA..516..133L. doi:10.1016/j.physa.2018.10.023. S2CID   125418069.
  83. 1 2 3 4 5 6 7 8 9 Longone, Pablo; P.M. Centres; A. J. Ramirez-Pastor (2019). "Percolation of aligned rigid rods on two-dimensional triangular lattices". Physical Review E. 100 (5): 052104. arXiv: 1906.03966 . Bibcode:2019PhRvE.100e2104L. doi:10.1103/PhysRevE.100.052104. PMID   31870027. S2CID   182953009.
  84. 1 2 3 4 Budinski-Petkovic, Lj; I. Loncarevic; Z. M. Jacsik; S. B. Vrhovac (2016). "Jamming and percolation in random sequential adsorption of extended objects on a triangular lattice with quenched impurities". Journal of Statistical Mechanics: Theory and Experiment. 2016 (5): 053101. Bibcode:2016JSMTE..05.3101B. doi:10.1088/1742-5468/2016/05/053101. S2CID   3913989.
  85. 1 2 Cherkasova, V. A.; Yu. Yu. Tarasevich; N. I. Lebovka; N.V. Vygornitskii (2010). "Percolation of the aligned dimers on a square lattice". Eur. Phys. J. B. 74 (2): 205–209. arXiv: 0912.0778 . Bibcode:2010EPJB...74..205C. doi:10.1140/epjb/e2010-00089-2. S2CID   118485353.
  86. 1 2 3 4 Leroyer, Y.; E. Pommiers (1994). "Monte Carlo analysis of percolation of line segments on a square lattice". Physical Review B. 50 (5): 2795–2799. arXiv: cond-mat/9312066 . Bibcode:1994PhRvB..50.2795L. doi:10.1103/PhysRevB.50.2795. PMID   9976520. S2CID   119495907.
  87. 1 2 3 4 5 6 7 Vanderwalle, N.; S. Galam; M. Kramer (2000). "A new universality for random sequential deposition of needles". Eur. Phys. J. B. 14 (3): 407–410. arXiv: cond-mat/0004271 . Bibcode:2000EPJB...14..407V. doi:10.1007/s100510051047. S2CID   11142384.
  88. Kondrat, Grzegorz; Andrzej Pękalski (2001). "Percolation and jamming in random sequential adsorption of linear segments on a square lattice". Physical Review E. 63 (5): 051108. arXiv: cond-mat/0102031 . Bibcode:2001PhRvE..63e1108K. doi:10.1103/PhysRevE.63.051108. PMID   11414888. S2CID   44490067.
  89. 1 2 3 4 5 6 7 Haji-Akbari, A.; Nasim Haji-Akbari; Robert M. Ziff (2015). "Dimer Covering and Percolation Frustration". Physical Review E. 92 (3): 032134. arXiv: 1507.04411 . Bibcode:2015PhRvE..92c2134H. doi:10.1103/PhysRevE.92.032134. PMID   26465453. S2CID   34100812.
  90. Zia, R. K. P.; W. Yong; B. Schmittmann (2009). "Percolation of a collection of finite random walks: a model for gas permeation through thin polymeric membranes". Journal of Mathematical Chemistry. 45: 58–64. doi:10.1007/s10910-008-9367-6. S2CID   94092783.
  91. 1 2 3 4 Wu, Yong; B. Schmittmann; R. K. P. Zia (2008). "Two-dimensional polymer networks near percolation". Journal of Physics A. 41 (2): 025008. Bibcode:2008JPhA...41b5004W. doi:10.1088/1751-8113/41/2/025004. S2CID   13053653.
  92. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Cornette, V.; A.J. Ramirez-Pastor; F. Nieto (2003). "Percolation of polyatomic species on a square lattice". European Physical Journal B. 36 (3): 391–399. Bibcode:2003EPJB...36..391C. doi:10.1140/epjb/e2003-00358-1. S2CID   119852589.
  93. 1 2 3 Ziff, R. M.; C. R. Scullard; J. C. Wierman; M. R. A. Sedlock (2012). "The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices". Journal of Physics A. 45 (49): 494005. arXiv: 1210.6609 . Bibcode:2012JPhA...45W4005Z. doi:10.1088/1751-8113/45/49/494005. S2CID   2121370.
  94. 1 2 3 4 5 6 7 8 9 10 11 Mertens, Stephan; Cristopher Moore (2012). "Continuum percolation thresholds in two dimensions". Physical Review E. 86 (6): 061109. arXiv: 1209.4936 . Bibcode:2012PhRvE..86f1109M. doi:10.1103/PhysRevE.86.061109. PMID   23367895. S2CID   15107275.
  95. 1 2 3 4 Quintanilla, John A.; R. M. Ziff (2007). "Asymmetry in the percolation thresholds of fully penetrable disks with two different radii". Physical Review E. 76 (5): 051115 [6 pages]. Bibcode:2007PhRvE..76e1115Q. doi:10.1103/PhysRevE.76.051115. PMID   18233631.
  96. 1 2 3 Quintanilla, J; S. Torquato; R. M. Ziff (2000). "Efficient measurement of the percolation threshold for fully penetrable discs". J. Phys. A: Math. Gen. 33 (42): L399–L407. Bibcode:2000JPhA...33L.399Q. CiteSeerX   10.1.1.6.8207 . doi:10.1088/0305-4470/33/42/104.
  97. Lorenz, B; I. Orgzall; H.-O. Heuer (1993). "Universality and cluster structures in continuum models of percolation with two different radius distributions". J. Phys. A: Math. Gen. 26 (18): 4711–4712. Bibcode:1993JPhA...26.4711L. doi:10.1088/0305-4470/26/18/032.
  98. Rosso, M (1989). "Concentration gradient approach to continuum percolation in two dimensions". J. Phys. A: Math. Gen. 22 (4): L131–L136. Bibcode:1989JPhA...22L.131R. doi:10.1088/0305-4470/22/4/004.
  99. 1 2 Gawlinski, Edward T; H. Eugene Stanley (1981). "Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs". J. Phys. A: Math. Gen. 14 (8): L291–L299. Bibcode:1981JPhA...14L.291G. doi:10.1088/0305-4470/14/8/007.
  100. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Yi, Y.-B.; A. M. Sastry (2004). "Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution". Proceedings of the Royal Society A. 460 (5): 2353–2380. Bibcode:2004RSPSA.460.2353Y. doi:10.1098/rspa.2004.1279. S2CID   2475482.
  101. 1 2 3 Pike, G. E.; C. H. Seager (1974). "Percolation and conductivity: A computer study I". Physical Review B. 10 (4): 1421–1434. Bibcode:1974PhRvB..10.1421P. doi:10.1103/PhysRevB.10.1421.
  102. 1 2 3 4 5 6 7 8 9 10 11 Lin, Jianjun; Chen, Huisu (2019). "Measurement of continuum percolation properties of two-dimensional particulate systems comprising congruent and binary superellipses". Powder Technology. 347: 17–26. doi:10.1016/j.powtec.2019.02.036. S2CID   104332397.
  103. Li, Mingqi; Chen, Huisu; Lin, Jianjun; Zhang, Rongling; Liu, Lin (July 2021). "Effects of the pore shape polydispersity on the percolation threshold and diffusivity of porous composites: Theoretical and numerical studies". Powder Technology. 386: 382–393. doi:10.1016/j.powtec.2021.03.055. ISSN   0032-5910. S2CID   233675695.
  104. Koza, Zbigniew; Piotr Brzeski; Grzegorz Kondrat (2023). "Percolation of fully penetrable disks using the three-leg cluster method". J. Phys. A: Math. Theor. (in press) (16): 165001. Bibcode:2023JPhA...56p5001K. doi: 10.1088/1751-8121/acc3d0 . S2CID   257524315.
  105. 1 2 3 4 5 6 7 8 Charbonneau, Benoit; Patrick Charbonneau; Yi Hu; Zhen Yang (2021). "High-dimensional percolation criticality and hints of mean-field-like caging of the random Lorentz gas". Physical Review E. 104 (2): 024137. arXiv: 2105.04711 . Bibcode:2021PhRvE.104b4137C. doi:10.1103/PhysRevE.104.024137. PMID   34525662. S2CID   234357912.
  106. Gilbert, E. N. (1961). "Random Plane Networks". J. Soc. Indust. Appl. Math. 9 (4): 533–543. doi:10.1137/0109045.
  107. Xu, Wenhui; Junfeng Wang; Hao Hu; Youjin Deng (2021). "Critical polynomials in the nonplanar and continuum percolation models". Physical Review E. 103 (2): 022127. arXiv: 2010.02887 . Bibcode:2021PhRvE.103b2127X. doi:10.1103/PhysRevE.103.022127. ISSN   2470-0045. PMID   33736116. S2CID   222140792.
  108. 1 2 3 Tarasevich, Yuri Yu.; Andrei V. Eserkepov (2020). "Percolation thresholds for discorectangles: numerical estimation for a range of aspect ratios". Physical Review E. 101 (2): 022108. arXiv: 1910.05072 . Bibcode:2020PhRvE.101b2108T. doi:10.1103/PhysRevE.101.022108. PMID   32168641. S2CID   204401814.
  109. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Li, Jiantong; Mikael Östling (2016). "Precise percolation thresholds of two-dimensional random systems comprising overlapping ellipses". Physica A. 462: 940–950. Bibcode:2016PhyA..462..940L. doi:10.1016/j.physa.2016.06.020.
  110. Nguyen, Van Lien; Enrique Canessa (1999). "Finite-size scaling in two-dimensional continuum percolation models". Modern Physics Letters B. 13 (17): 577–583. arXiv: cond-mat/9909200 . Bibcode:1999MPLB...13..577N. doi:10.1142/S0217984999000737. S2CID   18560722.
  111. Roberts, F. D. K. (1967). "A Monte Carlo Solution of a Two-Dimensional Unstructured Cluster Problem". Biometrika. 54 (3/4): 625–628. doi:10.2307/2335053. JSTOR   2335053. PMID   6064024.
  112. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Xia, W.; M. F. Thorpe (1988). "Percolation properties of random ellipses". Physical Review A. 38 (5): 2650–2656. Bibcode:1988PhRvA..38.2650X. doi:10.1103/PhysRevA.38.2650. PMID   9900674.
  113. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Torquato, S.; Y. Jiao (2012). "Effect of dimensionality on the continuum percolation of overlapping hyperspheres and hypercubes. II. Simulation results and analyses". J. Chem. Phys. 137 (7): 074106. arXiv: 1208.3720 . Bibcode:2012JChPh.137g4106T. doi:10.1063/1.4742750. PMID   22920102. S2CID   13188197.
  114. 1 2 3 4 5 6 7 8 9 10 11 12 Baker, Don R.; Gerald Paul; Sameet Sreenivasan; H. Eugene Stanley (2002). "Continuum percolation threshold for interpenetrating squares and cubes". Physical Review E. 66 (4): 046136 [5 pages]. arXiv: cond-mat/0203235 . Bibcode:2002PhRvE..66d6136B. doi:10.1103/PhysRevE.66.046136. PMID   12443288. S2CID   9561586.
  115. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Li, Jiantong; Mikael Östling (2013). "Percolation thresholds of two-dimensional continuum systems of rectangles". Physical Review E. 88 (1): 012101. Bibcode:2013PhRvE..88a2101L. doi:10.1103/PhysRevE.88.012101. PMID   23944408. S2CID   21438506.
  116. Li, Jiantong; Shi-Li Zhang (2009). "Finite-size scaling in stick percolation". Physical Review E. 80 (4): 040104(R). Bibcode:2009PhRvE..80d0104L. doi:10.1103/PhysRevE.80.040104. PMID   19905260.
  117. 1 2 3 Tarasevich, Yuri Yu.; Andrei V. Eserkepov (2018). "Percolation of sticks: Effect of stick alignment and length dispersity". Physical Review E. 98 (6): 062142. arXiv: 1811.06681 . Bibcode:2018PhRvE..98f2142T. doi:10.1103/PhysRevE.98.062142. S2CID   54187951.
  118. 1 2 3 4 5 6 7 8 9 Sasidevan, V. (2013). "Continuum percolation of overlapping discs with a distribution of radii having a power-law tail". Physical Review E. 88 (2): 022140. arXiv: 1302.0085 . Bibcode:2013PhRvE..88b2140S. doi:10.1103/PhysRevE.88.022140. PMID   24032808. S2CID   24046421.
  119. 1 2 van der Marck, Steven C. (1996). "Network approach to void percolation in a pack of unequal spheres". Physical Review Letters. 77 (9): 1785–1788. Bibcode:1996PhRvL..77.1785V. doi:10.1103/PhysRevLett.77.1785. PMID   10063171.
  120. 1 2 3 4 5 6 7 Jin, Yuliang; Patrick Charbonneau (2014). "Mapping the arrest of the random Lorentz gas onto the dynamical transition of a simple glass former". Physical Review E. 91 (4): 042313. arXiv: 1409.0688 . Bibcode:2015PhRvE..91d2313J. doi:10.1103/PhysRevE.91.042313. PMID   25974497. S2CID   16117644.
  121. 1 2 Lin, Jianjun; Zhang, Wulong; Chen, Huisu; Zhang, Rongling; Liu, Lin (2019). "Effect of pore characteristic on the percolation threshold and diffusivity of porous media comprising overlapping concave-shaped pores". International Journal of Heat and Mass Transfer. 138: 1333–1345. doi:10.1016/j.ijheatmasstransfer.2019.04.110. S2CID   164424008.
  122. Meeks, Kelsey; J. Tencer; M.L. Pantoya (2017). "Percolation of binary disk systems: Modeling and theory". Physical Review E. 95 (1): 012118. Bibcode:2017PhRvE..95a2118M. doi: 10.1103/PhysRevE.95.012118 . PMID   28208494.
  123. Quintanilla, John A. (2001). "Measurement of the percolation threshold for fully penetrable disks of different radii". Physical Review E. 63 (6): 061108. Bibcode:2001PhRvE..63f1108Q. doi:10.1103/PhysRevE.63.061108. PMID   11415069.
  124. 1 2 3 Melchert, Oliver (2013). "Percolation thresholds on planar Euclidean relative-neighborhood graphs". Physical Review E. 87 (4): 042106. arXiv: 1301.6967 . Bibcode:2013PhRvE..87d2106M. doi:10.1103/PhysRevE.87.042106. PMID   23679372. S2CID   9691279.
  125. 1 2 Bernardi, Olivier; Curien, Nicolas; Miermont, Grėgory (2019). "A Boltzmann approach to percolation on random triangulations". Canadian Journal of Mathematics. 71: 1–43. arXiv: 1705.04064 . doi:10.4153/CJM-2018-009-x. S2CID   6817693.
  126. 1 2 3 4 5 Becker, A.; R. M. Ziff (2009). "Percolation thresholds on two-dimensional Voronoi networks and Delaunay triangulations". Physical Review E. 80 (4): 041101. arXiv: 0906.4360 . Bibcode:2009PhRvE..80d1101B. doi:10.1103/PhysRevE.80.041101. PMID   19905267. S2CID   22549508.
  127. Shante, K. S.; S. Kirkpatrick (1971). "An introduction to percolation theory". Advances in Physics. 20 (85): 325–357. Bibcode:1971AdPhy..20..325S. doi:10.1080/00018737100101261.
  128. 1 2 3 Hsu, H. P.; M. C. Huang (1999). "Percolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals". Physical Review E. 60 (6): 6361–6370. Bibcode:1999PhRvE..60.6361H. doi:10.1103/PhysRevE.60.6361. PMID   11970550. S2CID   8750738.
  129. 1 2 Huang, Ming-Chang; Hsiao-Ping Hsu (2002). "Percolation thresholds, critical exponents, and scaling functions on spherical random lattices". International Journal of Modern Physics C. 13 (3): 383–395. doi:10.1142/S012918310200319X.
  130. 1 2 Norrenbrock, C. (2014). "Percolation threshold on planar Euclidean Gabriel Graphs". Journal of Physics A. 40 (31): 9253–9258. arXiv: 0704.2098 . Bibcode:2007JPhA...40.9253P. doi:10.1088/1751-8113/40/31/005. S2CID   680787.
  131. 1 2 Bertin, E; J.-M. Billiot; R. Drouilhet (2002). "Continuum percolation in the Gabriel graph". Adv. Appl. Probab. 34 (4): 689. doi:10.1239/aap/1037990948. S2CID   121288601.
  132. Lepage, Thibaut; Lucie Delaby; Fausto Malvagi; Alain Mazzolo (2011). "Monte Carlo simulation of fully Markovian stochastic geometries". Progress in Nuclear Science and Technology. 2: 743–748. doi: 10.15669/pnst.2.743 .
  133. Zhang, C.; K. De'Bell (1993). "Reformulation of the percolation problem on a quasilattice: Estimates of the percolation threshold, chemical dimension, and amplitude ratio". Physical Review B. 47 (14): 8558–8564. Bibcode:1993PhRvB..47.8558Z. doi:10.1103/PhysRevB.47.8558. PMID   10004894.
  134. Ziff, R. M.; F. Babalievski (1999). "Site percolation on the Penrose rhomb lattice". Physica A. 269 (2–4): 201–210. Bibcode:1999PhyA..269..201Z. doi:10.1016/S0378-4371(99)00166-1.
  135. Lu, Jian Ping; Joseph L. Birman (1987). "Percolation and Scaling on a Quasilattice". Journal of Statistical Physics. 46 (5/6): 1057–1066. Bibcode:1987JSP....46.1057L. doi:10.1007/BF01011156. S2CID   121645524.
  136. 1 2 3 4 5 6 7 8 Babalievski, F. (1995). "Percolation thresholds and percolation conductivities of octagonal and dodecagonal quasicrystalline lattices". Physica A. 220 (1995): 245–250. Bibcode:1995PhyA..220..245B. doi:10.1016/0378-4371(95)00260-E.
  137. Bollobás, Béla; Oliver Riordan (2006). "The critical probability for random Voronoi percolation in the plane is 1/2". Probab. Theory Relat. Fields. 136 (3): 417–468. arXiv: math/0410336 . doi:10.1007/s00440-005-0490-z. S2CID   15985691.
  138. Angel, Omer; Schramm, Oded (2003). "Uniform infinite planar triangulation". Commun. Math. Phys. 241 (2–3): 191–213. arXiv: math/0207153 . Bibcode:2003CMaPh.241..191A. doi:10.1007/s00220-003-0932-3. S2CID   17718301.
  139. Angel, O.; Curien, Nicolas (2014). "Percolations on random maps I: Half-plane models". Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. 51 (2): 405–431. arXiv: 1301.5311 . Bibcode:2015AIHPB..51..405A. doi:10.1214/13-AIHP583. S2CID   14964345.
  140. 1 2 3 Zierenberg, Johannes; Niklas Fricke; Martin Marenz; F. P. Spitzner; Viktoria Blavatska; Wolfhard Janke (2017). "Percolation thresholds and fractal dimensions for square and cubic lattices with long-range correlated defects". Physical Review E. 96 (6): 062125. arXiv: 1708.02296 . Bibcode:2017PhRvE..96f2125Z. doi:10.1103/PhysRevE.96.062125. PMID   29347311. S2CID   22353394.
  141. 1 2 3 4 5 6 7 Sotta, P.; D. Long (2003). "The crossover from 2D to 3D percolation: Theory and numerical simulations". Eur. Phys. J. E. 11 (4): 375–388. Bibcode:2003EPJE...11..375S. doi:10.1140/epje/i2002-10161-6. PMID   15011039. S2CID   32831742.
  142. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Horton, M. K.; Moram, M. A. (April 17, 2017). "Alloy composition fluctuations and percolation in semiconductor alloy quantum wells". Applied Physics Letters. 110 (16): 162103. Bibcode:2017ApPhL.110p2103H. doi:10.1063/1.4980089. ISSN   0003-6951.
  143. 1 2 3 4 5 6 7 Gliozzi, F.; S. Lottini; M. Panero; A. Rago (2005). "Random percolation as a gauge theory". Nuclear Physics B. 719 (3): 255–274. arXiv: cond-mat/0502339 . Bibcode:2005NuPhB.719..255G. doi:10.1016/j.nuclphysb.2005.04.021. hdl:2318/5995. S2CID   119360708.
  144. 1 2 3 4 5 6 7 8 Yoo, Ted Y.; Jonathan Tran; Shane P. Stahlheber; Carina E. Kaainoa; Kevin Djepang; Alexander R. Small (2014). "Site percolation on lattices with low average coordination numbers". Journal of Statistical Mechanics: Theory and Experiment. 2014 (6): P06014. arXiv: 1403.1676 . Bibcode:2014JSMTE..06..014Y. doi:10.1088/1742-5468/2014/06/p06014. S2CID   119290405.
  145. 1 2 3 4 5 6 7 8 9 10 11 Tran, Jonathan; Ted Yoo; Shane Stahlheber; Alex Small (2013). "Percolation thresholds on 3-dimensional lattices with 3 nearest neighbors". Journal of Statistical Mechanics: Theory and Experiment. 2013 (5): P05014. arXiv: 1211.6531 . Bibcode:2013JSMTE..05..014T. doi:10.1088/1742-5468/2013/05/P05014. S2CID   119182062.
  146. Wells, A. F. (1984). "Structures Based on the 3-Connected Net 103b". Journal of Solid State Chemistry. 54 (3): 378–388. Bibcode:1984JSSCh..54..378W. doi:10.1016/0022-4596(84)90169-5.
  147. 1 2 Pant, Mihir; Don Towsley; Dirk Englund; Saikat Guha (2017). "Percolation thresholds for photonic quantum computing". Nature Communications. 10 (1): 1070. arXiv: 1701.03775 . doi:10.1038/s41467-019-08948-x. PMC   6403388 . PMID   30842425.
  148. Hyde, Stephen T.; O'Keeffe, Michael; Proserpio, Davide M. (2008). "A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics". Angew. Chem. Int. Ed. 47 (42): 7996–8000. doi:10.1002/anie.200801519. PMID   18767088.
  149. 1 2 3 4 5 6 7 8 9 10 van der Marck, Steven C. (1997). "Percolation thresholds of the duals of the face-centered-cubic, hexagonal-close-packed, and diamond lattices". Physical Review E. 55 (6): 6593–6597. Bibcode:1997PhRvE..55.6593V. doi:10.1103/PhysRevE.55.6593.
  150. 1 2 Frisch, H. L.; E. Sonnenblick; V. A. Vyssotsky; J. M. Hammersley (1961). "Critical Percolation Probabilities (Site Problem)". Physical Review. 124 (4): 1021–1022. Bibcode:1961PhRv..124.1021F. doi:10.1103/PhysRev.124.1021.
  151. 1 2 Vyssotsky, V. A.; S. B. Gordon; H. L. Frisch; J. M. Hammersley (1961). "Critical Percolation Probabilities (Bond Problem)". Physical Review. 123 (5): 1566–1567. Bibcode:1961PhRv..123.1566V. doi:10.1103/PhysRev.123.1566.
  152. 1 2 3 4 5 6 7 Gaunt, D. S.; M. F. Sykes (1983). "Series study of random percolation in three dimensions". J. Phys. A. 16 (4): 783. Bibcode:1983JPhA...16..783G. doi:10.1088/0305-4470/16/4/016.
  153. 1 2 3 4 Xu, Xiao; Junfeng Wang; Jian-Ping Lv; Youjin Deng (2014). "Simultaneous analysis of three-dimensional percolation models". Frontiers of Physics. 9 (1): 113–119. arXiv: 1310.5399 . Bibcode:2014FrPhy...9..113X. doi:10.1007/s11467-013-0403-z. S2CID   119250232.
  154. Silverman, Amihal; J. Adler (1990). "Site-percolation threshold for a diamond lattice with diatomic substitution". Physical Review B. 42 (2): 1369–1373. Bibcode:1990PhRvB..42.1369S. doi:10.1103/PhysRevB.42.1369. PMID   9995550.
  155. 1 2 van der Marck, Steven C. (1997). "Erratum: Percolation thresholds and universal formulas [Phys. Rev. E 55, 1514 (1997)]". Physical Review E. 56 (3): 3732. Bibcode:1997PhRvE..56.3732V. doi: 10.1103/PhysRevE.56.3732.2 .
  156. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 van der Marck, Steven C. (1998). "Calculation of Percolation Thresholds in High Dimensions for FCC, BCC and Diamond Lattices". International Journal of Modern Physics C. 9 (4): 529–540. arXiv: cond-mat/9802187 . Bibcode:1998IJMPC...9..529V. doi:10.1142/S0129183198000431. S2CID   119097158.
  157. 1 2 Sykes, M. F.; D. S. Gaunt; M. Glen (1976). "Percolation processes in three dimensions". J. Phys. A: Math. Gen. 9 (10): 1705–1712. Bibcode:1976JPhA....9.1705S. doi:10.1088/0305-4470/9/10/021.
  158. 1 2 3 4 5 6 7 8 Sykes, M. F.; J. W. Essam (1964). "Critical percolation probabilities by series method". Physical Review. 133 (1A): A310–A315. Bibcode:1964PhRv..133..310S. doi:10.1103/PhysRev.133.A310.
  159. 1 2 3 4 5 6 van der Marck, Steven C. (1998). "Site percolation and random walks on d-dimensional Kagome lattices". Journal of Physics A. 31 (15): 3449–3460. arXiv: cond-mat/9801112 . Bibcode:1998JPhA...31.3449V. doi:10.1088/0305-4470/31/15/010. S2CID   18989583.
  160. Sur, Amit; Joel L. Lebowitz; J. Marro; M. H. Kalos; S. Kirkpatrick (1976). "Monte Carlo studies of percolation phenomena for a simple cubic lattice". Journal of Statistical Physics. 15 (5): 345–353. Bibcode:1976JSP....15..345S. doi:10.1007/BF01020338. S2CID   38734613.
  161. 1 2 Wang, J; Z. Zhou; W. Zhang; T. Garoni; Y. Deng (2013). "Bond and site percolation in three dimensions". Physical Review E. 87 (5): 052107. arXiv: 1302.0421 . Bibcode:2013PhRvE..87e2107W. doi:10.1103/PhysRevE.87.052107. PMID   23767487. S2CID   14087496.
  162. Grassberger, P. (1992). "Numerical studies of critical percolation in three dimensions". J. Phys. A. 25 (22): 5867–5888. Bibcode:1992JPhA...25.5867G. doi:10.1088/0305-4470/25/22/015.
  163. Acharyya, M.; D. Stauffer (1998). "Effects of Boundary Conditions on the Critical Spanning Probability". Int. J. Mod. Phys. C. 9 (4): 643–647. arXiv: cond-mat/9805355 . Bibcode:1998IJMPC...9..643A. doi:10.1142/S0129183198000534. S2CID   15684907.
  164. Jan, N.; D. Stauffer (1998). "Random Site Percolation in Three Dimensions". Int. J. Mod. Phys. C. 9 (4): 341–347. Bibcode:1998IJMPC...9..341J. doi:10.1142/S0129183198000261.
  165. Deng, Youjin; H. W. J. Blöte (2005). "Monte Carlo study of the site-percolation model in two and three dimensions". Physical Review E. 72 (1): 016126. Bibcode:2005PhRvE..72a6126D. doi:10.1103/PhysRevE.72.016126. PMID   16090055.
  166. Ballesteros, P. N.; L. A. Fernández; V. Martín-Mayor; A. Muñoz Sudepe; G. Parisi; J. J. Ruiz-Lorenzo (1999). "Scaling corrections: site percolation and Ising model in three dimensions". Journal of Physics A. 32 (1): 1–13. arXiv: cond-mat/9805125 . Bibcode:1999JPhA...32....1B. doi:10.1088/0305-4470/32/1/004. S2CID   2787294.
  167. 1 2 3 Lorenz, C. D.; R. M. Ziff (1998). "Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation". Journal of Physics A. 31 (40): 8147–8157. arXiv: cond-mat/9806224 . Bibcode:1998JPhA...31.8147L. doi:10.1088/0305-4470/31/40/009. S2CID   12493873.
  168. 1 2 3 4 5 6 7 8 9 10 11 Koza, Zbigniew; Jakub Poła (2016). "From discrete to continuous percolation in dimensions 3 to 7". Journal of Statistical Mechanics: Theory and Experiment. 2016 (10): 103206. arXiv: 1606.08050 . Bibcode:2016JSMTE..10.3206K. doi:10.1088/1742-5468/2016/10/103206. S2CID   118580056.
  169. Škvor, Jiří; Ivo Nezbeda (2009). "Percolation threshold parameters of fluids". Physical Review E. 79 (4): 041141. Bibcode:2009PhRvE..79d1141S. doi:10.1103/PhysRevE.79.041141. PMID   19518207.
  170. 1 2 3 4 Adler, Joan; Yigal Meir; Amnon Aharony; A. B. Harris; Lior Klein (1990). "Low-Concentration Series in General Dimension". Journal of Statistical Physics. 58 (3/4): 511–538. Bibcode:1990JSP....58..511A. doi:10.1007/BF01112760. S2CID   122109020.
  171. 1 2 3 4 5 6 7 8 Dammer, Stephan M; Haye Hinrichsen (2004). "Spreading with immunization in high dimensions". Journal of Statistical Mechanics: Theory and Experiment. 2004 (7): P07011. arXiv: cond-mat/0405577 . Bibcode:2004JSMTE..07..011D. doi:10.1088/1742-5468/2004/07/P07011. S2CID   118981083.
  172. 1 2 3 Lorenz, C. D.; R. M. Ziff (1998). "Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices". Physical Review E. 57 (1): 230–236. arXiv: cond-mat/9710044 . Bibcode:1998PhRvE..57..230L. doi:10.1103/PhysRevE.57.230. S2CID   119074750.
  173. 1 2 Schrenk, K. J.; N. A. M. Araújo; H. J. Herrmann (2013). "Stacked triangular lattice: percolation properties". Physical Review E. 87 (3): 032123. arXiv: 1302.0484 . Bibcode:2013PhRvE..87c2123S. doi:10.1103/PhysRevE.87.032123. S2CID   2917074.
  174. Martins, P.; J. Plascak (2003). "Percolation on two- and three-dimensional lattices". Physical Review. 67 (4): 046119. arXiv: cond-mat/0304024 . Bibcode:2003PhRvE..67d6119M. doi:10.1103/physreve.67.046119. PMID   12786448. S2CID   31891392.
  175. Bradley, R. M.; P. N. Strenski; J.-M. Debierre (1991). "Surfaces of percolation clusters in three dimensions". Physical Review B. 44 (1): 76–84. Bibcode:1991PhRvB..44...76B. doi:10.1103/PhysRevB.44.76. PMID   9998221.
  176. 1 2 3 4 5 6 Kurzawski, Ł.; K. Malarz (2012). "Simple cubic random-site percolation thresholds for complex neighbourhoods". Rep. Math. Phys. 70 (2): 163–169. arXiv: 1111.3254 . Bibcode:2012RpMP...70..163K. CiteSeerX   10.1.1.743.1726 . doi:10.1016/S0034-4877(12)60036-6. S2CID   119120046.
  177. Gallyamov, S. R.; S.A. Melchukov (2013). "Percolation threshold of a simple cubic lattice with fourth neighbors: the theory and numerical calculation with parallelization" (PDF). Third International Conference "High Performance Computing" HPC-UA 2013 (Ukraine, Kyiv, October 7–11, 2013). Archived from the original (PDF) on August 23, 2019. Retrieved August 23, 2019.
  178. Sykes, M. F.; D. S. Gaunt; J. W. Essam (1976). "The percolation probability for the site problem on the face-centred cubic lattice". Journal of Physics A. 9 (5): L43–L46. Bibcode:1976JPhA....9L..43S. doi:10.1088/0305-4470/9/5/002.
  179. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Hu, Yi; Patrick Charbonneau (2021). "Percolation thresholds on high-dimensional Dn and E8-related lattices". Physical Review E. 103 (6): 062115. arXiv: 2102.09682 . Bibcode:2021PhRvE.103f2115H. doi:10.1103/PhysRevE.103.062115. PMID   34271715. S2CID   231979212.
  180. 1 2 Lorenz, C. D.; R. May; R. M. Ziff (2000). "Similarity of Percolation Thresholds on the HCP and FCC Lattices" (PDF). Journal of Statistical Physics. 98 (3/4): 961–970. doi:10.1023/A:1018648130343. hdl: 2027.42/45178 . S2CID   10950378.
  181. Tahir-Kheli, Jamil; W. A. Goddard III (2007). "Chiral plaquette polaron theory of cuprate superconductivity". Physical Review B. 76 (1): 014514. arXiv: 0707.3535 . Bibcode:2007PhRvB..76a4514T. doi:10.1103/PhysRevB.76.014514. S2CID   8882419.
  182. 1 2 3 4 5 6 7 Malarz, Krzysztof (2015). "Simple cubic random-site percolation thresholds for neighborhoods containing fourth-nearest neighbors". Physical Review E. 91 (4): 043301. arXiv: 1501.01586 . Bibcode:2015PhRvE..91d3301M. doi:10.1103/PhysRevE.91.043301. PMID   25974606. S2CID   37943657.
  183. Xun, Zhipeng; Dapeng Hao; Robert M. Ziff (2021). "Site percolation on square and simple cubic lattices with extended neighborhoods and their continuum limit". Physical Review E. 103 (2): 022126. arXiv: 2010.02895 . Bibcode:2021PhRvE.103b2126X. doi:10.1103/PhysRevE.103.022126. PMID   33735955. S2CID   222141832.
  184. 1 2 3 4 5 6 7 8 9 10 Xun, Zhipeng; Robert M. Ziff (2020). "Bond percolation on simple cubic lattices with extended neighborhoods". Physical Review E. 102 (4): 012102. arXiv: 2001.00349 . Bibcode:2020PhRvE.102a2102X. doi:10.1103/PhysRevE.102.012102. PMID   32795057. S2CID   209531616.
  185. 1 2 3 4 Jerauld, G. R.; L. E. Scriven; H. T. Davis (1984). "Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder". J. Phys. C: Solid State Phys. 17 (19): 3429–3439. Bibcode:1984JPhC...17.3429J. doi:10.1088/0022-3719/17/19/017.
  186. Xu, Fangbo; Zhiping Xu; Boris I. Yakobson (2014). "Site-Percolation Threshold of Carbon Nanotube Fibers---Fast Inspection of Percolation with Markov Stochastic Theory". Physica A. 407: 341–349. arXiv: 1401.2130 . Bibcode:2014PhyA..407..341X. doi:10.1016/j.physa.2014.04.013. S2CID   119267606.
  187. 1 2 3 Gawron, T. R.; Marek Cieplak (1991). "Site percolation thresholds of the FCC lattice" (PDF). Acta Physica Polonica A. 80 (3): 461. Bibcode:1991AcPPA..80..461G. doi: 10.12693/APhysPolA.80.461 .
  188. Harter, T. (2005). "Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields". Physical Review E. 72 (2): 026120. Bibcode:2005PhRvE..72b6120H. doi:10.1103/PhysRevE.72.026120. PMID   16196657. S2CID   2708506.
  189. Sykes, M. F.; Rehr, J. J.; Glen, Maureen (1996). "A note on the percolation probabilities of pairs of closely similar lattices". Mathematical Proceedings of the Cambridge Philosophical Society . 76: 389–392. doi:10.1017/S0305004100049021. S2CID   96528423.
  190. Weber, H.; W. Paul (1996). "Penetrant diffusion in frozen polymer matrices: A finite-size scaling study of free volume percolation". Physical Review E. 54 (4): 3999–4007. Bibcode:1996PhRvE..54.3999W. doi:10.1103/PhysRevE.54.3999. PMID   9965547.
  191. 1 2 3 4 5 Mitra, S.; D. Saha; A. Sensharma (2022). "Percolation in a simple cubic lattice with distortion". Physical Review E. 106 (3): 034109. arXiv: 2207.12079 . Bibcode:2022PhRvE.106c4109M. doi:10.1103/PhysRevE.106.034109. PMID   36266842.
  192. Tarasevich, Yu. Yu.; V. A. Cherkasova (2007). "Dimer percolation and jamming on simple cubic lattice". European Physical Journal B. 60 (1): 97–100. arXiv: 0709.3626 . Bibcode:2007EPJB...60...97T. doi:10.1140/epjb/e2007-00321-2. S2CID   5419806.
  193. Holcomb, D F..; J. J. Rehr, Jr. (1969). "Percolation in heavily doped semiconductors*". Physical Review. 183 (3): 773–776. Bibcode:1969PhRv..183..773H. doi:10.1103/PhysRev.183.773.
  194. Holcomb, D F.; F. Holcomb; M. Iwasawa (1972). "Clustering of randomly placed spheres". Biometrika. 59: 207–209. doi:10.1093/biomet/59.1.207.
  195. Shante, Vinod K. S.; Scott Kirkpatrick (1971). "An introduction to percolation theory". Advances in Physics. 20 (85): 325–357. Bibcode:1971AdPhy..20..325S. doi:10.1080/00018737100101261.
  196. 1 2 Rintoul, M. D.; S. Torquato (1997). "Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model". J. Phys. A: Math. Gen. 30 (16): L585. Bibcode:1997JPhA...30L.585R. CiteSeerX   10.1.1.42.4284 . doi:10.1088/0305-4470/30/16/005.
  197. Consiglio, R.; R. Baker; G. Paul; H. E. Stanley (2003). "Continuum percolation of congruent overlapping spherocylinders". Physica A. 319: 49–55. doi:10.1016/S0378-4371(02)01501-7.
  198. 1 2 3 4 5 6 7 8 Xu, Wenxiang; Xianglong Su; Yang Jiao (2016). "Continuum percolation of congruent overlapping spherocylinders". Physical Review E. 93 (3): 032122. Bibcode:2016PhRvE..94c2122X. doi:10.1103/PhysRevE.94.032122. PMID   27078307.
  199. 1 2 Lorenz, C. D.; R. M. Ziff (2000). "Precise determination of the critical percolation threshold for the three dimensional Swiss cheese model using a growth algorithm" (PDF). J. Chem. Phys. 114 (8): 3659. Bibcode:2001JChPh.114.3659L. doi:10.1063/1.1338506. hdl: 2027.42/70114 .
  200. 1 2 3 4 5 6 7 8 9 Lin, Jianjun; Chen, Huisu; Xu, Wenxiang (2018). "Geometrical percolation threshold of congruent cuboidlike particles in overlapping particle systems". Physical Review E. 98 (1): 012134. Bibcode:2018PhRvE..98a2134L. doi:10.1103/PhysRevE.98.012134. PMID   30110832. S2CID   52017287.
  201. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Garboczi, E. J.; K. A. Snyder; J. F. Douglas (1995). "Geometrical percolation threshold of overlapping ellipsoids". Physical Review E. 52 (1): 819–827. Bibcode:1995PhRvE..52..819G. doi:10.1103/PhysRevE.52.819. PMID   9963485.
  202. 1 2 3 4 Li, Mingqi; Chen, Huisu; Lin, Jianjun (January 2020). "Efficient measurement of the percolation threshold for random systems of congruent overlapping ovoids". Powder Technology. 360: 598–607. doi:10.1016/j.powtec.2019.10.044. ISSN   0032-5910. S2CID   208693526.
  203. Li, Mingqi; Chen, Huisu; Lin, Jianjun (April 2020). "Numerical study for the percolation threshold and transport properties of porous composites comprising non-centrosymmetrical superovoidal pores". Computer Methods in Applied Mechanics and Engineering. 361: 112815. Bibcode:2020CMAME.361k2815L. doi:10.1016/j.cma.2019.112815. ISSN   0045-7825. S2CID   213152892.
  204. 1 2 3 4 5 6 Dall, Jesper; Michael Christensen (2002). "Random geometric graphs". Physical Review E. 66 (1): 016121. arXiv: cond-mat/0203026 . Bibcode:2002PhRvE..66a6121D. doi:10.1103/PhysRevE.66.016121. PMID   12241440. S2CID   15193516.
  205. Gori, Giacomo; Andrea Trombettoni (2015). "Conformal invariance in three dimensional percolation". Journal of Statistical Mechanics: Theory and Experiment. 2015 (7): P07014. arXiv: 1504.07209 . Bibcode:2015JSMTE..07..014G. doi:10.1088/1742-5468/2015/07/P07014. S2CID   119292052.
  206. Balberg, I.; N. Binenbaum (1984). "Percolation thresholds in the three-dimensional sticks system". Physical Review Letters. 52 (17): 1465. Bibcode:1984PhRvL..52.1465B. doi:10.1103/PhysRevLett.52.1465.
  207. 1 2 3 4 5 6 7 8 9 10 Yi, Y.-B.; A. M. Sastry (2004). "Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution". Proc. R. Soc. Lond. A. 460 (2048): 2353–2380. Bibcode:2004RSPSA.460.2353Y. doi:10.1098/rspa.2004.1279. S2CID   2475482.
  208. 1 2 3 Hyytiä, E.; J. Virtamo; P. Lassila; J. Ott (2012). "Continuum percolation threshold for permeable aligned cylinders and opportunistic networking". IEEE Communications Letters. 16 (7): 1064–1067. doi:10.1109/LCOMM.2012.051512.120497. S2CID   1056865.
  209. 1 2 3 4 5 Torquato, S.; Y. Jiao (2012). "Effect of Dimensionality on the Percolation Threshold of Overlapping Nonspherical Hyperparticles". Physical Review E. 87 (2): 022111. arXiv: 1210.0134 . Bibcode:2013PhRvE..87b2111T. doi:10.1103/PhysRevE.87.022111. PMID   23496464. S2CID   11417012.
  210. 1 2 3 Yi, Y. B.; E. Tawerghi (2009). "Geometric percolation thresholds of interpenetrating plates in three-dimensional space". Physical Review E. 79 (4): 041134. Bibcode:2009PhRvE..79d1134Y. doi:10.1103/PhysRevE.79.041134. PMID   19518200.
  211. 1 2 3 Powell, M. J. (1979). "Site percolation in randomly packed spheres". Physical Review B. 20 (10): 4194–4198. Bibcode:1979PhRvB..20.4194P. doi:10.1103/PhysRevB.20.4194.
  212. 1 2 Ziff, R. M.; Salvatore Torquato (2016). "Percolation of disordered jammed sphere packings". Journal of Physics A: Mathematical and Theoretical. 50 (8): 085001. arXiv: 1611.00279 . Bibcode:2017JPhA...50h5001Z. doi:10.1088/1751-8121/aa5664. S2CID   53003822.
  213. 1 2 3 4 5 6 Yi, Y. B.; K. Esmail (2012). "Computational measurement of void percolation thresholds of oblate particles and thin plate composites". J. Appl. Phys. 111 (12): 124903–124903–6. Bibcode:2012JAP...111l4903Y. doi:10.1063/1.4730333.
  214. Lin, Jianjun; Chen, Huisu (2018). "Continuum percolation of porous media via random packing of overlapping cube-like particles". Theoretical & Applied Mechanics Letters. 8 (5): 299–303. doi: 10.1016/j.taml.2018.05.007 .
  215. Lin, Jianjun; Chen, Huisu (2018). "Effect of particle morphologies on the percolation of particulate porous media: A study of superballs". Powder Technology. 335: 388–400. doi:10.1016/j.powtec.2018.05.015. S2CID   103471554.
  216. 1 2 3 4 5 6 7 8 9 10 11 12 Priour, Jr., D. J.; N. J. McGuigan (2018). "Percolation through voids around randomly oriented polyhedra and axially symmetric grains". Physical Review Letters. 121 (22): 225701. arXiv: 1801.09970 . Bibcode:2018PhRvL.121v5701P. doi:10.1103/PhysRevLett.121.225701. PMID   30547614. S2CID   119185480.
  217. 1 2 3 4 5 6 7 8 9 Novak, Igor L.; Fei Gao; Pavel Kraikivski; Boris M. Slepchenko (2011). "Diffusion amid random overlapping obstacles: Similarities, invariants, approximations". J. Chem. Phys. 134 (15): 154104. Bibcode:2011JChPh.134o4104N. doi:10.1063/1.3578684. PMC   3094463 . PMID   21513372.
  218. 1 2 3 4 5 6 Yi, Y. B. (2006). "Void percolation and conduction of overlapping ellipsoids". Physical Review E. 74 (3): 031112. Bibcode:2006PhRvE..74c1112Y. doi:10.1103/PhysRevE.74.031112. PMID   17025599.
  219. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ballow, A.; P. Linton; D. J. Priour Jr. (2023). "Percolation through voids around toroidal inclusions". Physical Review E. 107 (1): 014902. arXiv: 2208.10582 . Bibcode:2023PhRvE.107a4902B. doi:10.1103/PhysRevE.107.014902. PMID   36797924. S2CID   251741342.
  220. 1 2 Priour, Jr., D. J.; N. J. McGuigan (2017). "Percolation through voids around randomly oriented faceted inclusions". arXiv: 1712.10241 [cond-mat.stat-mech].
  221. Kertesz, Janos (1981). "Percolation of holes between overlapping spheres: Monte Carlo calculation of the critical volume fraction" (PDF). Journal de Physique Lettres. 42 (17): L393–L395. doi:10.1051/jphyslet:019810042017039300. S2CID   122115573.
  222. Elam, W. T.; A. R. Kerstein; J. J. Rehr (1984). "Critical properties of the void percolation problem for spheres". Physical Review Letters. 52 (7): 1516–1519. Bibcode:1984PhRvL..52.1516E. doi:10.1103/PhysRevLett.52.1516.
  223. Rintoul, M. D. (2000). "Precise determination of the void percolation threshold for two distributions of overlapping spheres". Physical Review E. 62 (6): 68–72. Bibcode:2000PhRvE..62...68R. doi:10.1103/PhysRevE.62.68. PMID   11088435.
  224. 1 2 Höfling, F.; T. Munk; E. Frey; T. Franosch (2008). "Critical dynamics of ballistic and Brownian particles in a heterogeneous environment". J. Chem. Phys. 128 (16): 164517. arXiv: 0712.2313 . Bibcode:2008JChPh.128p4517H. doi:10.1063/1.2901170. PMID   18447469. S2CID   25509814.
  225. Priour, Jr., D.J. (2014). "Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis". Physical Review E. 89 (1): 012148. arXiv: 1208.0328 . Bibcode:2014PhRvE..89a2148P. doi:10.1103/PhysRevE.89.012148. PMID   24580213. S2CID   20349307.
  226. Clerc, J. P.; G. Giraud; S. Alexander; E. Guyon (1979). "Conductivity of a mixture of conducting and insulating grains: Dimensionality effects". Physical Review B. 22 (5): 2489–2494. doi:10.1103/PhysRevB.22.2489.
  227. C. Larmier; E. Dumonteil; F. Malvagi; A. Mazzolo; A. Zoia (2016). "Finite-size effects and percolation properties of Poisson geometries". Physical Review E. 94 (1): 012130. arXiv: 1605.04550 . Bibcode:2016PhRvE..94a2130L. doi:10.1103/PhysRevE.94.012130. PMID   27575099. S2CID   19361619.
  228. 1 2 3 4 5 6 Zakalyukin, R. M.; V. A. Chizhikov (2005). "Calculations of the Percolation Thresholds of a Three-Dimensional (Icosahedral) Penrose Tiling by the Cubic Approximant Method". Crystallography Reports. 50 (6): 938–948. Bibcode:2005CryRp..50..938Z. doi:10.1134/1.2132400. S2CID   94290876.
  229. Kantor, Yacov (1986). "Three-dimensional percolation with removed lines of sites". Physical Review B. 33 (5): 3522–3525. Bibcode:1986PhRvB..33.3522K. doi:10.1103/PhysRevB.33.3522. PMID   9938740.
  230. Schrenk, K. J.; M. R. Hilário; V. Sidoravicius; N. A. M. Araújo; H. J. Herrmann; M. Thielmann; A. Teixeira (2016). "Critical Fragmentation Properties of Random Drilling: How Many Holes Need to Be Drilled to Collapse a Wooden Cube?". Physical Review Letters. 116 (5): 055701. arXiv: 1601.03534 . Bibcode:2016PhRvL.116e5701S. doi:10.1103/PhysRevLett.116.055701. PMID   26894717. S2CID   3145131.
  231. Grassberger, P. (2017). "Some remarks on drilling percolation". Physical Review E. 95 (1): 010103. arXiv: 1611.07939 . doi:10.1103/PhysRevE.95.010103. PMID   28208497. S2CID   12476714.
  232. Grassberger, Peter; Marcelo R. Hilário; Vladas Sidoravicius (2017). "Percolation in Media with Columnar Disorder". J. Stat. Phys. 168 (4): 731–745. arXiv: 1704.04742 . Bibcode:2017JSP...168..731G. doi:10.1007/s10955-017-1826-7. S2CID   15915864.
  233. 1 2 Szczygieł, Bartłomiej; Kamil Kwiatkowski; Maciej Lewenstein; Gerald John Lapeyre, Jr.; Jan Wehr (2016). "Percolation thresholds for discrete-continuous models with nonuniform probabilities of bond formation". Physical Review E. 93 (2): 022127. arXiv: 1509.07401 . Bibcode:2016PhRvE..93b2127S. doi:10.1103/PhysRevE.93.022127. PMID   26986308. S2CID   18110437.
  234. Abete, T.; A. de Candia; D. Lairez; A. Coniglio (2004). "Percolation Model for Enzyme Gel Degradation". Physical Review Letters. 93: 228301. arXiv: cond-mat/0402551 . doi:10.1103/PhysRevLett.93.228301.
  235. 1 2 3 Kirkpatrick, Scott (1976). "Percolation phenomena in higher dimensions: Approach to the mean-field limit". Physical Review Letters. 36 (2): 69–72. Bibcode:1976PhRvL..36...69K. doi:10.1103/PhysRevLett.36.69.
  236. 1 2 3 4 Gaunt, D. S.; Sykes, M. F.; Ruskin, Heather (1976). "Percolation processes in d-dimensions". J. Phys. A: Math. Gen. 9 (11): 1899–1911. Bibcode:1976JPhA....9.1899G. doi:10.1088/0305-4470/9/11/015.
  237. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Grassberger, Peter (2003). "Critical percolation in high dimensions". Physical Review E. 67 (3): 4. arXiv: cond-mat/0202144 . Bibcode:2003PhRvE..67c6101G. doi:10.1103/PhysRevE.67.036101. PMID   12689126. S2CID   43707822.
  238. 1 2 Paul, Gerald; Robert M. Ziff; H. Eugene Stanley (2001). "Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions". Physical Review E. 64 (2): 8. arXiv: cond-mat/0101136 . Bibcode:2001PhRvE..64b6115P. doi:10.1103/PhysRevE.64.026115. PMID   11497659. S2CID   18271196.
  239. Ballesteros, H. G.; L. A. Fernández; V. Martín-Mayor; A. Muñoz Sudupe; G. Parisi; J. J. Ruiz-Lorenzo (1997). "Measures of critical exponents in the four dimensional site percolation". Phys. Lett. B. 400 (3–4): 346–351. arXiv: hep-lat/9612024 . Bibcode:1997PhLB..400..346B. doi:10.1016/S0370-2693(97)00337-7. S2CID   10242417.
  240. 1 2 3 4 5 6 7 Kotwica, M.; P. Gronek; K. Malarz (2019). "Efficient space virtualisation for Hoshen–Kopelman algorithm". International Journal of Modern Physics C. 30 (8): 1950055–1950099. arXiv: 1803.09504 . Bibcode:2019IJMPC..3050055K. doi:10.1142/S0129183119500554. S2CID   4418563.
  241. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mertens, Stephan; Christopher Moore (2018). "Percolation Thresholds and Fisher Exponents in Hypercubic Lattices". Physical Review E. 98 (2): 022120. arXiv: 1806.08067 . Bibcode:2018PhRvE..98b2120M. doi:10.1103/PhysRevE.98.022120. PMID   30253462. S2CID   52821851.
  242. 1 2 3 4 Harris, A. B.; Fisch, R. (1977). "Critical Behavior of Random Resistor Networks". Physical Review Letters. 38 (15): 796–799. Bibcode:1977PhRvL..38..796H. doi:10.1103/PhysRevLett.38.796.
  243. 1 2 3 4 Xun, Zhipeng (2020). "Precise bond percolation thresholds on several four-dimensional lattices". Physical Review Research. 2 (1): 013067. arXiv: 1910.11408 . Bibcode:2020PhRvR...2a3067X. doi:10.1103/PhysRevResearch.2.013067. S2CID   204915841.
  244. 1 2 Gaunt, D. S.; Ruskin, Heather (1978). "Bond percolation processes in d-dimensions". J. Phys. A: Math. Gen. 11 (7): 1369. Bibcode:1978JPhA...11.1369G. doi:10.1088/0305-4470/11/7/025.
  245. 1 2 3 4 5 Adler, Joan; Yigal Meir; Amnon Aharony; A. B. Harris (1990). "Series Study of Percolation Moments in General Dimension". Physical Review B. 41 (13): 9183–9206. Bibcode:1990PhRvB..41.9183A. doi:10.1103/PhysRevB.41.9183. PMID   9993262.
  246. Stauffer, Dietrich; Robert M. Ziff (1999). "Reexamination of Seven-Dimensional Site Percolation Thresholds". International Journal of Modern Physics C. 11 (1): 205–209. arXiv: cond-mat/9911090 . Bibcode:2000IJMPC..11..205S. doi:10.1142/S0129183100000183. S2CID   119362011.
  247. Mertens, Stephan; Moore, Christopher (2018). "Series Expansion of Critical Densities for Percolation on ℤd". J. Phys. A: Math. Theor. 51 (47): 475001. arXiv: 1805.02701 . doi:10.1088/1751-8121/aae65c. S2CID   119399128.
  248. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Zhao, Pengyu; Jinhong Yan; Zhipeng Xun; Dapeng Hao; Robert M. Ziff (2022). "Site and bond percolation on four-dimensional simple hypercubic lattices with extended neighborhoods". Journal of Statistical Mechanics: Theory and Experiment. 2022 (3): 033202. arXiv: 2109.11195 . Bibcode:2022JSMTE2022c3202Z. doi:10.1088/1742-5468/ac52a8. S2CID   237605083.
  249. 1 2 Löbl, Matthias C. (2024). "Loss-tolerant architecture for quantum computing with quantum emitters". Quantum. 8: 1302. arXiv: 2304.03796 . doi:10.22331/q-2024-03-28-1302.
  250. 1 2 Schulman, L. S. (1983). "Long range percolation in one dimension". Journal of Physics A: Mathematical and General. 16 (17): L639–L641. Bibcode:1983JPhA...16L.639S. doi:10.1088/0305-4470/16/17/001. ISSN   0305-4470.
  251. Aizenman, M.; Newman, C. M. (December 1, 1986). "Discontinuity of the percolation density in one dimensional 1/|x−y|2 percolation models". Communications in Mathematical Physics. 107 (4): 611–647. Bibcode:1986CMaPh.107..611A. doi:10.1007/BF01205489. ISSN   0010-3616. S2CID   117904292.
  252. 1 2 Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A. (2017). "One-dimensional long-range percolation: A numerical study". Physical Review E. 96 (1): 012108. arXiv: 1610.00200 . Bibcode:2017PhRvE..96a2108G. doi:10.1103/physreve.96.012108. PMID   29347133. S2CID   9926800.
  253. Baek, S.K.; Petter Minnhagen; Beom Jun Kim (2009). "Comment on 'Monte Carlo simulation study of the two-stage percolation transition in enhanced binary trees'". J. Phys. A: Math. Theor. 42 (47): 478001. arXiv: 0910.4340 . Bibcode:2009JPhA...42U8001B. doi:10.1088/1751-8113/42/47/478001. S2CID   102489139.
  254. 1 2 3 Boettcher, Stefan; Jessica L. Cook; Robert M. Ziff (2009). "Patchy percolation on a hierarchical network with small-world bonds". Physical Review E. 80 (4): 041115. arXiv: 0907.2717 . Bibcode:2009PhRvE..80d1115B. doi:10.1103/PhysRevE.80.041115. PMID   19905281. S2CID   119265110.
  255. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Mertens, Stephan; Cristopher Moore (2017). "Percolation thresholds in hyperbolic lattices". Physical Review E. 96 (4): 042116. arXiv: 1708.05876 . Bibcode:2017PhRvE..96d2116M. doi:10.1103/PhysRevE.96.042116. PMID   29347529. S2CID   39025690.
  256. 1 2 3 Lopez, Jorge H.; J. M. Schwarz (2017). "Constraint percolation on hyperbolic lattices". Physical Review E. 96 (5): 052108. arXiv: 1512.05404 . Bibcode:2017PhRvE..96e2108L. doi:10.1103/PhysRevE.96.052108. PMID   29347694. S2CID   44770310.
  257. 1 2 3 4 5 6 7 8 9 Baek, S.K.; Petter Minnhagen; Beom Jun Kim (2009). "Percolation on hyperbolic lattices". Physical Review E. 79 (1): 011124. arXiv: 0901.0483 . Bibcode:2009PhRvE..79a1124B. doi:10.1103/PhysRevE.79.011124. PMID   19257018. S2CID   29468086.
  258. 1 2 3 4 5 6 7 8 Gu, Hang; Robert M. Ziff (2012). "Crossing on hyperbolic lattices". Physical Review E. 85 (5): 051141. arXiv: 1111.5626 . Bibcode:2012PhRvE..85e1141G. doi:10.1103/PhysRevE.85.051141. PMID   23004737. S2CID   7141649.
  259. 1 2 3 4 Nogawa, Tomoaki; Takehisa Hasegawa (2009). "Monte Carlo simulation study of the two-stage percolation transition in enhanced binary trees". J. Phys. A: Math. Theor. 42 (14): 145001. arXiv: 0810.1602 . Bibcode:2009JPhA...42n5001N. doi:10.1088/1751-8113/42/14/145001. S2CID   118367190.
  260. 1 2 Minnhagen, Petter; Seung Ki Baek (2010). "Analytic results for the percolation transitions of the enhanced binary tree". Physical Review E. 82 (1): 011113. arXiv: 1003.6012 . Bibcode:2010PhRvE..82a1113M. doi:10.1103/PhysRevE.82.011113. PMID   20866571. S2CID   21018113.
  261. Kozáková, Iva (2009). "Critical percolation of virtually free groups and other tree-like graphs". Annals of Probability. 37 (6): 2262–2296. arXiv: 0801.4153 . doi:10.1214/09-AOP458.
  262. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Wang, Junfeng; Zongzheng Zhou; Qingquan Liu; Timothy M. Garoni; Youjin Deng (2013). "A high-precision Monte Carlo study of directed percolation in (d + 1) dimensions". Physical Review E. 88 (4): 042102. arXiv: 1201.3006 . Bibcode:2013PhRvE..88d2102W. doi:10.1103/PhysRevE.88.042102. PMID   24229111. S2CID   43011467.
  263. 1 2 Jensen, Iwan; Anthony J. Guttmann (1995). "Series expansions of the percolation probability for directed square and honeycomb lattices". J. Phys. A: Math. Gen. 28 (17): 4813–4833. arXiv: cond-mat/9509121 . Bibcode:1995JPhA...28.4813J. doi:10.1088/0305-4470/28/17/015. S2CID   118993303.
  264. 1 2 Jensen, Iwan (2004). "Low-density series expansions for directed percolation: III. Some two-dimensional lattices". J. Phys. A: Math. Gen. 37 (4): 6899–6915. arXiv: cond-mat/0405504 . Bibcode:2004JPhA...37.6899J. CiteSeerX   10.1.1.700.2691 . doi:10.1088/0305-4470/37/27/003. S2CID   119326380.
  265. 1 2 3 4 Essam, J. W.; A. J. Guttmann; K. De'Bell (1988). "On two-dimensional directed percolation". J. Phys. A. 21 (19): 3815–3832. Bibcode:1988JPhA...21.3815E. doi:10.1088/0305-4470/21/19/018.
  266. Lübeck, S.; R. D. Willmann (2002). "Universal scaling behaviour of directed percolation and the pair contact process in an external field". J. Phys. A. 35 (48): 10205. arXiv: cond-mat/0210403 . Bibcode:2002JPhA...3510205L. doi:10.1088/0305-4470/35/48/301. S2CID   11831269.
  267. 1 2 Jensen, Iwan (1999). "Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice". J. Phys. A. 32 (28): 5233–5249. arXiv: cond-mat/9906036 . Bibcode:1999JPhA...32.5233J. doi:10.1088/0305-4470/32/28/304. S2CID   2681356.
  268. Essam, John; K. De'Bell; J. Adler; F. M. Bhatti (1986). "Analysis of extended series for bond percolation on the directed square lattice". Physical Review B. 33 (2): 1982–1986. Bibcode:1986PhRvB..33.1982E. doi:10.1103/PhysRevB.33.1982. PMID   9938508.
  269. Baxter, R. J.; A. J. Guttmann (1988). "Series expansion of the percolation probability for the directed square lattice". J. Phys. A. 21 (15): 3193–3204. Bibcode:1988JPhA...21.3193B. doi:10.1088/0305-4470/21/15/008.
  270. 1 2 3 Jensen, Iwan (1996). "Low-density series expansions for directed percolation on square and triangular lattices". J. Phys. A. 29 (22): 7013–7040. Bibcode:1996JPhA...29.7013J. doi:10.1088/0305-4470/29/22/007. S2CID   121332666.
  271. 1 2 3 4 5 6 7 8 9 10 Blease, J. (1977). "Series expansions for the directed-bond percolation problem". J. Phys. C: Solid State Phys. 10 (7): 917–924. Bibcode:1977JPhC...10..917B. doi:10.1088/0022-3719/10/7/003.
  272. 1 2 3 Grassberger, P.; Y.-C. Zhang (1996). ""Self-organized" formulation of standard percolation phenomena". Physica A. 224 (1): 169–179. Bibcode:1996PhyA..224..169G. doi:10.1016/0378-4371(95)00321-5.
  273. 1 2 3 4 5 6 Grassberger, P. (2009). "Local persistence in directed percolation". Journal of Statistical Mechanics: Theory and Experiment. 2009 (8): P08021. arXiv: 0907.4021 . Bibcode:2009JSMTE..08..021G. doi:10.1088/1742-5468/2009/08/P08021. S2CID   119236556.
  274. 1 2 3 4 Lübeck, S.; R. D. Willmann (2004). "Universal scaling behavior of directed percolation around the upper critical dimension". J. Stat. Phys. 115 (5–6): 1231–1250. arXiv: cond-mat/0401395 . Bibcode:2004JSP...115.1231L. CiteSeerX   10.1.1.310.8700 . doi:10.1023/B:JOSS.0000028059.24904.3b. S2CID   16267627.
  275. Perlsman, E.; S. Havlin (2002). "Method to estimate critical exponents using numerical studies". Europhys. Lett. 58 (2): 176–181. Bibcode:2002EL.....58..176P. doi:10.1209/epl/i2002-00621-7. S2CID   67818664.
  276. Adler, Joan; J. Berger; M. A. M. S. Duarte; Y. Meir (1988). "Directed percolation in 3+1 dimensions". Physical Review B. 37 (13): 7529–7533. Bibcode:1988PhRvB..37.7529A. doi:10.1103/PhysRevB.37.7529. PMID   9944046.
  277. 1 2 Grassberger, Peter (2009). "Logarithmic corrections in (4 + 1)-dimensional directed percolation". Physical Review E. 79 (5): 052104. arXiv: 0904.0804 . Bibcode:2009PhRvE..79e2104G. doi:10.1103/PhysRevE.79.052104. PMID   19518501. S2CID   23876626.
  278. Soares, Danyel J. B.; José S Andrade Jr; Hans J. Herrmann (2006). "Precise calculation of the threshold of various directed percolation models on a square lattice". J. Phys. A: Math. Gen. 38 (21): L413–L415. arXiv: cond-mat/0503408 . doi:10.1088/0305-4470/38/21/L06.
  279. Tretyakov, A. Yu.; N Inui (1995). "Critical behaviour for mixed site-bond directed percolation". J. Phys. A: Math. Gen. 28 (14): 3985–3990. arXiv: cond-mat/9505019 . Bibcode:1995JPhA...28.3985T. doi:10.1088/0305-4470/28/14/017.
  280. Wu, F. Y. (2010). "Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices I: Closed-form expressions". Physical Review E. 81 (6): 061110. arXiv: 0911.2514 . Bibcode:2010PhRvE..81f1110W. doi:10.1103/PhysRevE.81.061110. PMID   20866381. S2CID   31590247.
  281. Damavandi, Ojan Khatib; Robert M. Ziff (2015). "Percolation on hypergraphs with four-edges". J. Phys. A: Math. Theor. 48 (40): 405004. arXiv: 1506.06125 . Bibcode:2015JPhA...48N5004K. doi:10.1088/1751-8113/48/40/405004. S2CID   118481075.
  282. 1 2 Wu, F. Y. (2006). "New Critical Frontiers for the Potts and Percolation Models". Physical Review Letters. 96 (9): 090602. arXiv: cond-mat/0601150 . Bibcode:2006PhRvL..96i0602W. CiteSeerX   10.1.1.241.6346 . doi:10.1103/PhysRevLett.96.090602. PMID   16606250. S2CID   15182833.