Relative neighborhood graph

Last updated
The relative neighborhood graph of 100 random points in a unit square. Relative neighborhood graph.svg
The relative neighborhood graph of 100 random points in a unit square.

In computational geometry, the relative neighborhood graph (RNG) is an undirected graph defined on a set of points in the Euclidean plane by connecting two points and by an edge whenever there does not exist a third point that is closer to both and than they are to each other. This graph was proposed by Godfried Toussaint in 1980 as a way of defining a structure from a set of points that would match human perceptions of the shape of the set. [1] [2]

Contents

Algorithms

Supowit (1983) showed how to construct the relative neighborhood graph of points in the plane efficiently in time. [3] It can be computed in expected time, for random set of points distributed uniformly in the unit square. [4] The relative neighborhood graph can be computed in linear time from the Delaunay triangulation of the point set. [5] [6]

Generalizations

Because it is defined only in terms of the distances between points, the relative neighborhood graph can be defined for point sets in any dimension, [1] [7] [8] and for non-Euclidean metrics. [1] [5] [9] [10] Computing the relative neighborhood graph, for higher-dimensional point sets, can be done in time .

The relative neighborhood graph is an example of a lens-based beta skeleton. It is a subgraph of the Delaunay triangulation. In turn, the Euclidean minimum spanning tree is a subgraph of it, from which it follows that it is a connected graph.

The Urquhart graph, the graph formed by removing the longest edge from every triangle in the Delaunay triangulation, was originally proposed as a fast method to compute the relative neighborhood graph. [11] Although the Urquhart graph sometimes differs from the relative neighborhood graph [12] it can be used as an approximation to the relative neighborhood graph. [13]

Related Research Articles

<span class="mw-page-title-main">Delaunay triangulation</span> Triangulation method

In computational geometry, a Delaunay triangulation or Delone triangulation of a set of points in the plane subdivides their convex hull into triangles whose circumcircles do not contain any of the points. This maximizes the size of the smallest angle in any of the triangles, and tends to avoid sliver triangles.

<span class="mw-page-title-main">Convex hull</span> Smallest convex set containing a given set

In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity.

<span class="mw-page-title-main">Polygon triangulation</span> Partition of a simple polygon into triangles

In computational geometry, polygon triangulation is the partition of a polygonal area P into a set of triangles, i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P.

<span class="mw-page-title-main">Euclidean minimum spanning tree</span> Shortest network connecting points

A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.

<span class="mw-page-title-main">Simple polygon</span> Shape bounded by non-intersecting line segments

In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.

<span class="mw-page-title-main">Point-set triangulation</span> Simplicial complex in Euclidean geometry

A triangulation of a set of points in the Euclidean space is a simplicial complex that covers the convex hull of , and whose vertices belong to . In the plane, triangulations are made up of triangles, together with their edges and vertices. Some authors require that all the points of are vertices of its triangulations. In this case, a triangulation of a set of points in the plane can alternatively be defined as a maximal set of non-crossing edges between points of . In the plane, triangulations are special cases of planar straight-line graphs.

The art gallery problem or museum problem is a well-studied visibility problem in computational geometry. It originates from the following real-world problem:

"In an art gallery, what is the minimum number of guards who together can observe the whole gallery?"

In computational geometry, the Theta graph, or -graph, is a type of geometric spanner similar to a Yao graph. The basic method of construction involves partitioning the space around each vertex into a set of cones, which themselves partition the remaining vertices of the graph. Like Yao Graphs, a -graph contains at most one edge per cone; where they differ is how that edge is selected. Whereas Yao Graphs will select the nearest vertex according to the metric space of the graph, the -graph defines a fixed ray contained within each cone and selects the nearest neighbor with respect to orthogonal projections to that ray. The resulting graph exhibits several good spanner properties.

<span class="mw-page-title-main">Unit distance graph</span> Geometric graph with unit edge lengths

In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one. To distinguish these graphs from a broader definition that allows some non-adjacent pairs of vertices to be at distance one, they may also be called strict unit distance graphs or faithful unit distance graphs. As a hereditary family of graphs, they can be characterized by forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are non-strict unit distance graphs.

Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.

<span class="mw-page-title-main">Euclidean shortest path</span> Problem of computing shortest paths around geometric obstacles

The Euclidean shortest path problem is a problem in computational geometry: given a set of polyhedral obstacles in a Euclidean space, and two points, find the shortest path between the points that does not intersect any of the obstacles.

In computational geometry, the Bowyer–Watson algorithm is a method for computing the Delaunay triangulation of a finite set of points in any number of dimensions. The algorithm can be also used to obtain a Voronoi diagram of the points, which is the dual graph of the Delaunay triangulation.

A geometric spanner or a t-spanner graph or a t-spanner was initially introduced as a weighted graph over a set of points as its vertices for which there is a t-path between any pair of vertices for a fixed parameter t. A t-path is defined as a path through the graph with weight at most t times the spatial distance between its endpoints. The parameter t is called the stretch factor or dilation factor of the spanner.

<span class="mw-page-title-main">Godfried Toussaint</span> Canadian computer scientist (1944–2019)

Godfried Theodore Patrick Toussaint was a Canadian computer scientist, a professor of computer science, and the head of the Computer Science Program at New York University Abu Dhabi (NYUAD) in Abu Dhabi, United Arab Emirates. He is considered to be the father of computational geometry in Canada. He did research on various aspects of computational geometry, discrete geometry, and their applications: pattern recognition, motion planning, visualization, knot theory, linkage (mechanical) reconfiguration, the art gallery problem, polygon triangulation, the largest empty circle problem, unimodality, and others. Other interests included meander (art), compass and straightedge constructions, instance-based learning, music information retrieval, and computational music theory.

In computational geometry and computer science, the minimum-weight triangulation problem is the problem of finding a triangulation of minimal total edge length. That is, an input polygon or the convex hull of an input point set must be subdivided into triangles that meet edge-to-edge and vertex-to-vertex, in such a way as to minimize the sum of the perimeters of the triangles. The problem is NP-hard for point set inputs, but may be approximated to any desired degree of accuracy. For polygon inputs, it may be solved exactly in polynomial time. The minimum weight triangulation has also sometimes been called the optimal triangulation.

<span class="mw-page-title-main">Urquhart graph</span>

In computational geometry, the Urquhart graph of a set of points in the plane, named after Roderick B. Urquhart, is obtained by removing the longest edge from each triangle in the Delaunay triangulation.

<span class="mw-page-title-main">Beta skeleton</span>

In computational geometry and geometric graph theory, a β-skeleton or beta skeleton is an undirected graph defined from a set of points in the Euclidean plane. Two points p and q are connected by an edge whenever all the angles prq are sharper than a threshold determined from the numerical parameter β.

In computational geometry, a constrained Delaunay triangulation is a generalization of the Delaunay triangulation that forces certain required segments into the triangulation as edges, unlike the Delaunay triangulation itself which is based purely on the position of a given set of vertices without regard to how they should be connected by edges. It can be computed efficiently and has applications in geographic information systems and in mesh generation.

In discrete mathematics and theoretical computer science, the flip distance between two triangulations of the same point set is the number of flips required to transform one triangulation into another. A flip removes an edge between two triangles in the triangulation and then adds the other diagonal in the edge's enclosing quadrilateral, forming a different triangulation of the same point set.

References

  1. 1 2 3 Toussaint, G. T. (1980), "The relative neighborhood graph of a finite planar set", Pattern Recognition, 12 (4): 261–268, doi:10.1016/0031-3203(80)90066-7 .
  2. Jaromczyk, J.W.; Toussaint, G.T. (1992), "Relative neighborhood graphs and their relatives", Proceedings of the IEEE, 80 (9): 1502–1517, doi:10.1109/5.163414 .
  3. Supowit, K. J. (1983), "The relative neighborhood graph, with an application to minimum spanning trees", Journal of the ACM , 30 (3): 428–448, doi: 10.1145/2402.322386 .
  4. Katajainen, Jyrki; Nevalainen, Olli; Teuhola, Jukka (1987), "A linear expected-time algorithm for computing planar relative neighbourhood graphs", Information Processing Letters , 25 (2): 77–86, doi:10.1016/0020-0190(87)90225-0 .
  5. 1 2 Jaromczyk, J. W.; Kowaluk, M. (1987), "A note on relative neighborhood graphs", Proc. 3rd Symp. Computational Geometry, New York, NY, USA: ACM, pp. 233–241, doi:10.1145/41958.41983, ISBN   0-89791-231-4 .
  6. Lingas, A. (1994), "A linear-time construction of the relative neighborhood graph from the Delaunay triangulation", Computational Geometry , 4 (4): 199–208, doi: 10.1016/0925-7721(94)90018-3 .
  7. Jaromczyk, J. W.; Kowaluk, M. (1991), "Constructing the relative neighborhood graph in 3-dimensional Euclidean space", Discrete Applied Mathematics , 31 (2): 181–191, doi: 10.1016/0166-218X(91)90069-9 .
  8. Agarwal, Pankaj K.; Mataušek, Jiří (1992), "Relative neighborhood graphs in three dimensions", Proc. 3rd ACM–SIAM Symp. Discrete Algorithms, pp. 58–65.
  9. O'Rourke, J. (1982), "Computing the relative neighborhood graph in the and metrics", Pattern Recognition, 15 (3): 189–192, doi:10.1016/0031-3203(82)90070-X .
  10. Lee, D. T. (1985), "Relative neighborhood graphs in the -metric", Pattern Recognition, 18 (5): 327–332, doi:10.1016/0031-3203(85)90023-8 .
  11. Urquhart, R. B. (1980), "Algorithms for computation of relative neighborhood graph", Electronics Letters, 16 (14): 556–557, doi:10.1049/el:19800386 .
  12. Toussaint, G. T. (1980), "Comment: Algorithms for computing relative neighborhood graph", Electronics Letters, 16 (22): 860, doi:10.1049/el:19800611 . Reply by Urquhart, pp. 860–861.
  13. Andrade, Diogo Vieira; de Figueiredo, Luiz Henrique (2001), "Good approximations for the relative neighbourhood graph" (PDF), Proc. 13th Canadian Conference on Computational Geometry.