Effective medium approximations

Last updated

In materials science, effective medium approximations (EMA) or effective medium theory (EMT) pertain to analytical or theoretical modeling that describes the macroscopic properties of composite materials. EMAs or EMTs are developed from averaging the multiple values of the constituents that directly make up the composite material. At the constituent level, the values of the materials vary and are inhomogeneous. Precise calculation of the many constituent values is nearly impossible. However, theories have been developed that can produce acceptable approximations which in turn describe useful parameters including the effective permittivity and permeability of the materials as a whole. In this sense, effective medium approximations are descriptions of a medium (composite material) based on the properties and the relative fractions of its components and are derived from calculations, [1] [2] and effective medium theory. [3] There are two widely used formulae. [4]

Contents

Effective permittivity and permeability are averaged dielectric and magnetic characteristics of a microinhomogeneous medium. They both were derived in quasi-static approximation when the electric field inside a mixture particle may be considered as homogeneous. So, these formulae can not describe the particle size effect. Many attempts were undertaken to improve these formulae.

Applications

There are many different effective medium approximations, [5] each of them being more or less accurate in distinct conditions. Nevertheless, they all assume that the macroscopic system is homogeneous and, typical of all mean field theories, they fail to predict the properties of a multiphase medium close to the percolation threshold due to the absence of long-range correlations or critical fluctuations in the theory.

The properties under consideration are usually the conductivity or the dielectric constant [6] of the medium. These parameters are interchangeable in the formulas in a whole range of models due to the wide applicability of the Laplace equation. The problems that fall outside of this class are mainly in the field of elasticity and hydrodynamics, due to the higher order tensorial character of the effective medium constants.

EMAs can be discrete models, such as applied to resistor networks, or continuum theories as applied to elasticity or viscosity. However, most of the current theories have difficulty in describing percolating systems. Indeed, among the numerous effective medium approximations, only Bruggeman's symmetrical theory is able to predict a threshold. This characteristic feature of the latter theory puts it in the same category as other mean field theories of critical phenomena.[ citation needed ]

Bruggeman's model

For a mixture of two materials with permittivities and with corresponding volume fractions and , D.A.G. Bruggeman proposed a formula of the following form: [7]

Here the positive sign before the square root must be altered to a negative sign in some cases in order to get the correct imaginary part of effective complex permittivity which is related with electromagnetic wave attenuation. The formula is symmetric with respect to swapping the 'd' and 'm' roles. This formula is based on the equality

where is the jump of electric displacement flux all over the integration surface, is the component of microscopic electric field normal to the integration surface, is the local relative complex permittivity which takes the value inside the picked metal particle, the value inside the picked dielectric particle and the value outside the picked particle, is the normal component of the macroscopic electric field. Formula (4) comes out of Maxwell's equality . Thus only one picked particle is considered in Bruggeman's approach. The interaction with all the other particles is taken into account only in a mean field approximation described by . Formula (3) gives a reasonable resonant curve for plasmon excitations in metal nanoparticles if their size is 10 nm or smaller. However, it is unable to describe the size dependence for the resonant frequency of plasmon excitations that are observed in experiments [8]

Formulas

Without any loss of generality, we shall consider the study of the effective conductivity (which can be either dc or ac) for a system made up of spherical multicomponent inclusions with different arbitrary conductivities. Then the Bruggeman formula takes the form:

Circular and spherical inclusions

In a system of Euclidean spatial dimension that has an arbitrary number of components, [9] the sum is made over all the constituents. and are respectively the fraction and the conductivity of each component, and is the effective conductivity of the medium. (The sum over the 's is unity.)

Elliptical and ellipsoidal inclusions

This is a generalization of Eq. (1) to a biphasic system with ellipsoidal inclusions of conductivity into a matrix of conductivity . [10] The fraction of inclusions is and the system is dimensional. For randomly oriented inclusions,

where the 's denote the appropriate doublet/triplet of depolarization factors which is governed by the ratios between the axis of the ellipse/ellipsoid. For example: in the case of a circle (, ) and in the case of a sphere (, , ). (The sum over the 's is unity.)

The most general case to which the Bruggeman approach has been applied involves bianisotropic ellipsoidal inclusions. [11]

Derivation

The figure illustrates a two-component medium. [9] Consider the cross-hatched volume of conductivity , take it as a sphere of volume and assume it is embedded in a uniform medium with an effective conductivity . If the electric field far from the inclusion is then elementary considerations lead to a dipole moment associated with the volume

This polarization produces a deviation from . If the average deviation is to vanish, the total polarization summed over the two types of inclusion must vanish. Thus

where and are respectively the volume fraction of material 1 and 2. This can be easily extended to a system of dimension that has an arbitrary number of components. All cases can be combined to yield Eq. (1).

Eq. (1) can also be obtained by requiring the deviation in current to vanish. [12] [13] It has been derived here from the assumption that the inclusions are spherical and it can be modified for shapes with other depolarization factors; leading to Eq. (2).

A more general derivation applicable to bianisotropic materials is also available. [11]

Modeling of percolating systems

The main approximation is that all the domains are located in an equivalent mean field. Unfortunately, it is not the case close to the percolation threshold where the system is governed by the largest cluster of conductors, which is a fractal, and long-range correlations that are totally absent from Bruggeman's simple formula. The threshold values are in general not correctly predicted. It is 33% in the EMA, in three dimensions, far from the 16% expected from percolation theory and observed in experiments. However, in two dimensions, the EMA gives a threshold of 50% and has been proven to model percolation relatively well. [14] [15] [16]

Maxwell Garnett equation

In the Maxwell Garnett approximation, [17] the effective medium consists of a matrix medium with and inclusions with . Maxwell Garnett was the son of physicist William Garnett, and was named after Garnett's friend, James Clerk Maxwell. He proposed his formula to explain colored pictures that are observed in glasses doped with metal nanoparticles. His formula has a form

where is effective relative complex permittivity of the mixture, is relative complex permittivity of the background medium containing small spherical inclusions of relative permittivity with volume fraction of . This formula is based on the equality

where is the absolute permittivity of free space and is electric dipole moment of a single inclusion induced by the external electric field E. However this equality is good only for homogeneous medium and . Moreover the formula (1) ignores the interaction between single inclusions. Because of these circumstances, formula (1) gives too narrow and too high resonant curve for plasmon excitations in metal nanoparticles of the mixture. [18]

Formula

The Maxwell Garnett equation reads: [19]

where is the effective dielectric constant of the medium, of the inclusions, and of the matrix; is the volume fraction of the inclusions.

The Maxwell Garnett equation is solved by: [20] [21]

so long as the denominator does not vanish. A simple MATLAB calculator using this formula is as follows.

% This simple MATLAB calculator computes the effective dielectric% constant of a mixture of an inclusion material in a base medium% according to the Maxwell Garnett theory% INPUTS:%     eps_base: dielectric constant of base material;%     eps_incl: dielectric constant of inclusion material;%     vol_incl: volume portion of inclusion material;% OUTPUT:%     eps_mean: effective dielectric constant of the mixture.functioneps_mean=MaxwellGarnettFormula(eps_base, eps_incl, vol_incl)small_number_cutoff=1e-6;ifvol_incl<0||vol_incl>1disp('WARNING: volume portion of inclusion material is out of range!');endfactor_up=2*(1-vol_incl)*eps_base+(1+2*vol_incl)*eps_incl;factor_down=(2+vol_incl)*eps_base+(1-vol_incl)*eps_incl;ifabs(factor_down)<small_number_cutoffdisp('WARNING: the effective medium is singular!');eps_mean=0;elseeps_mean=eps_base*factor_up/factor_down;endend

Derivation

For the derivation of the Maxwell Garnett equation we start with an array of polarizable particles. By using the Lorentz local field concept, we obtain the Clausius-Mossotti relation:

Where is the number of particles per unit volume. By using elementary electrostatics, we get for a spherical inclusion with dielectric constant and a radius a polarisability :

If we combine with the Clausius Mosotti equation, we get:

Where is the effective dielectric constant of the medium, of the inclusions; is the volume fraction of the inclusions.
As the model of Maxwell Garnett is a composition of a matrix medium with inclusions we enhance the equation:

Validity

In general terms, the Maxwell Garnett EMA is expected to be valid at low volume fractions , since it is assumed that the domains are spatially separated and electrostatic interaction between the chosen inclusions and all other neighbouring inclusions is neglected. [22] The Maxwell Garnett formula, in contrast to Bruggeman formula, ceases to be correct when the inclusions become resonant. In the case of plasmon resonance, the Maxwell Garnett formula is correct only at volume fraction of the inclusions . [23] The applicability of effective medium approximation for dielectric multilayers [24] and metal-dielectric multilayers [25] have been studied, showing that there are certain cases where the effective medium approximation does not hold and one needs to be cautious in application of the theory.

Generalization of the Maxwell Garnett Equation to describe the nanoparticle size distribution

Maxwell Garnett Equation describes optical properties of nanocomposites which consist in a collection of perfectly spherical nanoparticles. All these nanoparticles must have the same size. However, due to confinement effect, the optical properties can be influenced by the nanoparticles size distribution. As shown by Battie et al. [26] , the Maxwell Garnett equation can be generalized to take into account this distribution.

and are the nanoparticle radius and size distribution, respectively. and are the mean radius and the volume fraction of the nanoparticles, respectively. is the first electric Mie coefficient. This equation reveals that the classical Maxwell Garnett equation gives a false estimation of the volume fraction nanoparticles when the size distribution cannot be neglected.


Generalization to include shape distribution of nanoparticles

The Maxwell Garnett equation only describes the optical properties of a collection of perfectely spherical nanoparticles. However, the optical properties of nanocomposites are sensitive to the nanoparticles shape distribution. To overcome this limit, Y. Battie et al. [27] have developped the shape distributed effective medium theory (SDEMT). This effective medium theory enables to calculate the effective dielectric function of a nanocomposite which consists in a collection of ellipsoïdal nanoparticles distributed in shape.

with

The depolarization factors () only depend on the shape of nanoparticles. is the distribution of depolarization factors.f is the volume fraction of the nanoparticles.

The SDEMT theory was used to extract the shape distribution of nanoparticles from absorption [28] or ellipsometric spectra [29] [30] .

Formula describing size effect

A new formula describing size effect was proposed. [18] This formula has a form

where a is the nanoparticle radius and is wave number. It is supposed here that the time dependence of the electromagnetic field is given by the factor In this paper Bruggeman's approach was used, but electromagnetic field for electric-dipole oscillation mode inside the picked particle was computed without applying quasi-static approximation. Thus the function is due to the field nonuniformity inside the picked particle. In quasi-static region (, i.e. for Ag this function becomes constant and formula (5) becomes identical with Bruggeman's formula.

Effective permeability formula

Formula for effective permeability of mixtures has a form [18]

Here is effective relative complex permeability of the mixture, is relative complex permeability of the background medium containing small spherical inclusions of relative permeability with volume fraction of . This formula was derived in dipole approximation. Magnetic octupole mode and all other magnetic oscillation modes of odd orders were neglected here. When and this formula has a simple form [18]

Effective medium theory for resistor networks

For a network consisting of a high density of random resistors, an exact solution for each individual element may be impractical or impossible. In such case, a random resistor network can be considered as a two-dimensional graph and the effective resistance can be modelled in terms of graph measures and geometrical properties of networks. [31] Assuming, edge length is much less than electrode spacing and edges to be uniformly distributed, the potential can be considered to drop uniformly from one electrode to another. Sheet resistance of such a random network () can be written in terms of edge (wire) density (), resistivity (), width () and thickness () of edges (wires) as:

See also

Related Research Articles

<span class="mw-page-title-main">Dielectric</span> Electrically insulating substance able to be polarised by an applied electric field

In electromagnetism, a dielectric is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarised, but also reorient so that their symmetry axes align to the field.

In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.

<span class="mw-page-title-main">Relative permittivity</span> Measure of the electric polarizability of a dielectric, compared with that of a vacuum

The relative permittivity is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.

<span class="mw-page-title-main">Permittivity</span> Measure of the electric polarizability of a dielectric

In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.

<span class="mw-page-title-main">Skin effect</span> Tendency of AC current flow in a conductors outer layer

In electromagnetism, skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the conductor. It is caused by opposing eddy currents induced by the changing magnetic field resulting from the alternating current. The electric current flows mainly at the skin of the conductor, between the outer surface and a level called the skin depth. Skin depth depends on the frequency of the alternating current; as frequency increases, current flow becomes more concentrated near the surface, resulting in less skin depth. Skin effect reduces the effective cross-section of the conductor and thus increases its effective resistance. At 60 Hz in copper, skin depth is about 8.5 mm. At high frequencies, skin depth becomes much smaller.

<span class="mw-page-title-main">Drude model</span> Model of electrical conduction

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.

<span class="mw-page-title-main">Displacement current</span> Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.

In physics and engineering, a constitutive equation or constitutive relation is a relation between two physical quantities that is specific to a material or substance, and approximates the response of that material to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

<span class="mw-page-title-main">Dielectrophoresis</span> Particle motion in a non-uniform electric field due to dipole-field interactions

Dielectrophoresis (DEP) is a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field. This force does not require the particle to be charged. All particles exhibit dielectrophoretic activity in the presence of electric fields. However, the strength of the force depends strongly on the medium and particles' electrical properties, on the particles' shape and size, as well as on the frequency of the electric field. Consequently, fields of a particular frequency can manipulate particles with great selectivity. This has allowed, for example, the separation of cells or the orientation and manipulation of nanoparticles and nanowires. Furthermore, a study of the change in DEP force as a function of frequency can allow the electrical properties of the particle to be elucidated.

<span class="mw-page-title-main">Microstrip</span> Conductor–ground plane electrical transmission line

Microstrip is a type of electrical transmission line which can be fabricated with any technology where a conductor is separated from a ground plane by a dielectric layer known as "substrate". Microstrip lines are used to convey microwave-frequency signals.

Vacuum permittivity, commonly denoted ε0, is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric constant, or the distributed capacitance of the vacuum. It is an ideal (baseline) physical constant. Its CODATA value is:

In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the loss angleδ or the corresponding loss tangenttan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.

The Dukhin number is a dimensionless quantity that characterizes the contribution of the surface conductivity to various electrokinetic and electroacoustic effects, as well as to electrical conductivity and permittivity of fluid heterogeneous systems. The number was named after Stanislav and Andrei Dukhin.

In dielectric spectroscopy, large frequency dependent contributions to the dielectric response, especially at low frequencies, may come from build-ups of charge. This Maxwell–Wagner–Sillars polarization, occurs either at inner dielectric boundary layers on a mesoscopic scale, or at the external electrode-sample interface on a macroscopic scale. In both cases this leads to a separation of charges. The charges are often separated over a considerable distance, and the contribution to dielectric loss can therefore be orders of magnitude larger than the dielectric response due to molecular fluctuations.

With increased interest in sea ice and its effects on the global climate, efficient methods are required to monitor both its extent and exchange processes. Satellite-mounted, microwave radiometers, such SSMI, AMSR and AMSU, are an ideal tool for the task because they can see through cloud cover, and they have frequent, global coverage. A passive microwave instrument detects objects through emitted radiation since different substance have different emission spectra. To detect sea ice more efficiently, there is a need to model these emission processes. The interaction of sea ice with electromagnetic radiation in the microwave range is still not well understood. In general is collected information limited because of the large-scale variability due to the emissivity of sea ice.

<span class="mw-page-title-main">Electric dipole moment</span> Measure of positive and negative charges

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.

Three-dimensional electrical capacitance tomography also known as electrical capacitance volume tomography (ECVT) is a non-invasive 3D imaging technology applied primarily to multiphase flows. Was introduced in the early 2000s as an extension of the conventional two-dimensional ECT. In conventional electrical capacitance tomography, sensor plates are distributed around a surface of interest. Measured capacitance between plate combinations is used to reconstruct 2D images (tomograms) of material distribution. Because the ECT sensor plates are required to have lengths on the order of the domain cross-section, 2D ECT does not provide the required resolution in the axial dimension. In ECT, the fringing field from the edges of the plates is viewed as a source of distortion to the final reconstructed image and is thus mitigated by guard electrodes. 3D ECT exploits this fringing field and expands it through 3D sensor designs that deliberately establish an electric field variation in all three dimensions. In 3D tomography, the data are acquired in 3D geometry, and the reconstruction algorithm produces the three-dimensional image directly, in contrast to 2D tomography, where 3D information might be obtained by stacking 2D slices reconstructed individually.

Spoof surface plasmons, also known as spoof surface plasmon polaritons and designer surface plasmons, are surface electromagnetic waves in microwave and terahertz regimes that propagate along planar interfaces with sign-changing permittivities. Spoof surface plasmons are a type of surface plasmon polariton, which ordinarily propagate along metal and dielectric interfaces in infrared and visible frequencies. Since surface plasmon polaritons cannot exist naturally in microwave and terahertz frequencies due to dispersion properties of metals, spoof surface plasmons necessitate the use of artificially-engineered metamaterials.

<span class="mw-page-title-main">Nanoparticle interfacial layer</span> Interfacial layer of nanoparticles

A nanoparticle interfacial layer is a well structured layer of typically organic molecules around a nanoparticle. These molecules are known as stabilizers, capping and surface ligands or passivating agents. The interfacial layer has a significant effect on the properties of the nanoparticle and is therefore often considered as an integral part of a nanoparticle. The interfacial layer has an typical thickness between 0.1 and 4 nm, which is dependent on the type of the molecules the layer is made of. The organic molecules that make up the interfacial layer are often amphiphilic molecules, meaning that they have a polar head group combined with a non-polar tail.

References

  1. Wenshan, Cai; Shalaev, Vladimir (November 2009). Optical Metamaterials: Fundamentals and Applications. Springer. pp. Chapter 2.4. ISBN   978-1-4419-1150-6.
  2. Wang, M; Pan, N (2008). "Predictions of effective physical properties of complex multiphase materials" (Free PDF download). Materials Science and Engineering: R: Reports. 63: 1–30. doi:10.1016/j.mser.2008.07.001.
  3. T.C. Choy, "Effective Medium Theory", Oxford University Press, (2016) 241 p.
  4. M. Scheller, C. Jansen, M. Koch, "Applications of Effective Medium Theories in the Terahertz Regime" in Recent Optical and Photonic Technologies, ed. by K.Y. Kim, Intech, Croatia, Vukovar (2010), p. 231.
  5. Tinga, W. R.; Voss, W. A. G.; Blossey, D. F. (1973). "Generalized approach to multiphase dielectric mixture theory". J. Appl. Phys. 44 (9): 3897. Bibcode:1973JAP....44.3897T. doi:10.1063/1.1662868. Archived from the original on 2012-07-16. Retrieved 2019-04-24.
  6. Lova, Paola; Megahd, Heba; Stagnaro, Paola; Alloisio, Marina; Patrini, Maddalena; Comoretto, Davide (2020-06-15). "Strategies for Dielectric Contrast Enhancement in 1D Planar Polymeric Photonic Crystals". Applied Sciences. 10 (12): 4122. doi: 10.3390/app10124122 . ISSN   2076-3417.
  7. Bruggeman, D. A. G. (1935). "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen". Annalen der Physik (in German). 416 (7): 636–664. Bibcode:1935AnP...416..636B. doi:10.1002/andp.19354160705. ISSN   0003-3804.
  8. S.J. Oldenburg. "Silver Nanoparticles: Properties and Applications". Sigma Aldrich. Retrieved 17 May 2019.
  9. 1 2 Landauer, Rolf (April 1978). "Electrical conductivity in inhomogeneous media". AIP Conference Proceedings. Vol. 40. American Institute of Physics. pp. 2–45. doi:10.1063/1.31150. Archived from the original on 2012-07-10. Retrieved 2010-02-07.
  10. Granqvist, C. G.; Hunderi, O. (1978). "Conductivity of inhomogeneous materials: Effective-medium theory with dipole-dipole interaction". Phys. Rev. B. 18 (4): 1554–1561. Bibcode:1978PhRvB..18.1554G. doi:10.1103/PhysRevB.18.1554.
  11. 1 2 Weiglhofer, W. S.; Lakhtakia, A.; Michel, B. (1998). "Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium". Microw. Opt. Technol. Lett. 15 (4): 263–266. doi:10.1002/(SICI)1098-2760(199707)15:4<263::AID-MOP19>3.0.CO;2-8. Archived from the original on 2013-01-05.
  12. Stroud, D. (1975). "Generalized effective-medium approach to the conductivity of an inhomogeneous material". Phys. Rev. B. 12 (8): 3368–3373. Bibcode:1975PhRvB..12.3368S. doi:10.1103/PhysRevB.12.3368.
  13. Davidson, A.; Tinkham, M. (1976). "Phenomenological equations for the electrical conductivity of microscopically inhomogeneous materials". Phys. Rev. B. 13 (8): 3261–3267. Bibcode:1976PhRvB..13.3261D. doi:10.1103/PhysRevB.13.3261.
  14. Kirkpatrick, Scott (1973). "Percolation and conduction". Rev. Mod. Phys. 45 (4): 574–588. Bibcode:1973RvMP...45..574K. doi:10.1103/RevModPhys.45.574.
  15. Zallen, Richard (1998). The Physics of Amorphous Solids. Wiley-Interscience. ISBN   978-0-471-29941-7.
  16. Rozen, John; Lopez, René; Haglund, Richard F. Jr.; Feldman, Leonard C. (2006). "Two-dimensional current percolation in nanocrystalline vanadium dioxide films". Appl. Phys. Lett. 88 (8): 081902. Bibcode:2006ApPhL..88h1902R. doi:10.1063/1.2175490. Archived from the original on 2012-07-12. Retrieved 2019-04-24.
  17. Garnett, J. C. M. (1904). "Colours in Metal Glasses and in Metallic Films". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 203 (359–371): 385–420. Bibcode:1904RSPTA.203..385G. doi: 10.1098/rsta.1904.0024 . ISSN   1364-503X.
  18. 1 2 3 4 Belyaev, B. A.; Tyurnev, V. V. (2018). "Electrodynamic Calculation of Effective Electromagnetic Parameters of a Dielectric Medium with Metallic Nanoparticles of a Given Size". Journal of Experimental and Theoretical Physics. 127 (4): 608–619. Bibcode:2018JETP..127..608B. doi:10.1134/S1063776118100114. ISSN   1063-7761. S2CID   125250487.
  19. Choy, Tuck C. (1999). Effective Medium Theory. Oxford: Clarendon Press. ISBN   978-0-19-851892-1.
  20. Levy, O., & Stroud, D. (1997). Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Physical Review B, 56(13), 8035.
  21. Liu, Tong, et al. "Microporous Co@ CoO nanoparticles with superior microwave absorption properties." Nanoscale 6.4 (2014): 2447-2454.
  22. Jepsen, Peter Uhd; Fischer, Bernd M.; Thoman, Andreas; Helm, Hanspeter; Suh, J. Y.; Lopez, René; Haglund, R. F. Jr. (2006). "Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy". Phys. Rev. B. 74 (20): 205103. Bibcode:2006PhRvB..74t5103J. doi:10.1103/PhysRevB.74.205103. hdl: 2440/36406 . S2CID   28476406.
  23. Belyaev, B. A.; Tyurnev, V. V. (2018). "Electrodynamic calculation of effective electromagnetic parameters of a dielectric medium with metallic nanoparticles of a given size". Journal of Experimental and Theoretical Physics. 127 (4): 608–619. Bibcode:2018JETP..127..608B. doi:10.1134/S1063776118100114. S2CID   125250487.
  24. Zhukovsky, S. V.; Andryieuski, A., Takayama, O.; Shkondin, E., Malureanu, R.; Jensen, F., Lavrinenko, A. V. (2015). "Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers". Physical Review Letters. 115 (17): 177402. arXiv: 1506.08078 . Bibcode:2015PhRvL.115q7402Z. doi:10.1103/PhysRevLett.115.177402. PMID   26551143. S2CID   4018894.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. Sukham, J.; Takayama, O., Mahmoodi, M.; Sychev, S., Bogdanov, A.; Hassan Tavassoli, S., Lavrinenko, A. V.; Malureanu R. (2019). "Investigation of effective media applicability for ultrathin multilayer structures". Nanoscale. 11 (26): 12582–12588. doi:10.1039/C9NR02471A. PMID   31231735. S2CID   195326315.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. Battie, Y.; Resano-Garcia, A., Chaoui, N.; Zhang, Y., En Naciri, A. (2014). "Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix". Journal of Chemical Physics. 140: 044705. doi:10.1063/1.4862995.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. Resano-Garcia, A.; Battie, Y., En Naciri, A.; Akil, S., Chaoui, N. (2015). "Experimental and theoretical determination of the plasmonic responses and shape distribution of colloidal metallic nanoparticles". Journal of Chemical Physics. 142: 134108. doi:10.1063/1.4916917.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. Battie, Y.; Resano-Garcia, A., En Naciri, A.; Akil, S., Chaoui, N. (2015). "Determination of morphological characteristics of metallic nanoparticles based on modified Maxwell-Garnett fitting of optical responses". Applied Physics Letters. 107: 143104. doi:10.1063/1.4932638.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. Battie, Y.; Izquierdo-Lorenzo, I., Resano-Garcia, A.; En Naciri, A., Akil, S.; Adam, P.M., Jradi, S. (2016). "How to determine the morphology of plasmonic nanocrystals without transmission electron microscopy?". Journal of Nanoparticle Research. 18: 1–13. doi:10.1007/s11051-016-3533-8.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. Battie, Y.; Stchakovsky, M., En Naciri, A.; Akil, S., Chaoui, N. (2017). "Ellipsometry of Colloidal solutions: New experimental setup and application to metallic colloids". Langmuir. 33: 7425–7434. doi:10.1021/acs.langmuir.7b00490.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, G. U . (2017). "Current distribution in conducting nanowire networks". Journal of Applied Physics. 122 (4): 045101. Bibcode:2017JAP...122d5101K. doi:10.1063/1.4985792.

Further reading