In physics and engineering, a constitutive equation or constitutive relation is a relation between two or more physical quantities (especially kinetic quantities as related to kinematic quantities) that is specific to a material or substance or field, and approximates its response to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.
Some constitutive equations are simply phenomenological; others are derived from first principles. A common approximate constitutive equation frequently is expressed as a simple proportionality using a parameter taken to be a property of the material, such as electrical conductivity or a spring constant. However, it is often necessary to account for the directional dependence of the material, and the scalar parameter is generalized to a tensor. Constitutive relations are also modified to account for the rate of response of materials and their non-linear behavior. [1] See the article Linear response function.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law. It deals with the case of linear elastic materials. Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used. Walter Noll advanced the use of constitutive equations, clarifying their classification and the role of invariance requirements, constraints, and definitions of terms like "material", "isotropic", "aeolotropic", etc. The class of "constitutive relations" of the form stress rate = f (velocity gradient, stress, density) was the subject of Walter Noll's dissertation in 1954 under Clifford Truesdell. [2]
In modern condensed matter physics, the constitutive equation plays a major role. See Linear constitutive equations and Nonlinear correlation functions. [3]
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
General stress, pressure | P, σ | F is the perpendicular component of the force applied to area A | Pa = N⋅m−2 | [M][L]−1[T]−2 |
General strain | ε |
| 1 | Dimensionless |
General elastic modulus | Emod | Pa = N⋅m−2 | [M][L]−1[T]−2 | |
Young's modulus | E, Y | Pa = N⋅m−2 | [M][L]−1[T] −2 | |
Shear modulus | G | Pa = N⋅m−2 | [M][L]−1[T]−2 | |
Bulk modulus | K, B | Pa = N⋅m−2 | [M][L]−1[T]−2 | |
Compressibility | C | Pa−1 = m2⋅N−1 | [M]−1[L][T]2 |
Friction is a complicated phenomenon. Macroscopically, the friction force F between the interface of two materials can be modelled as proportional to the reaction force R at a point of contact between two interfaces through a dimensionless coefficient of friction μf, which depends on the pair of materials:
This can be applied to static friction (friction preventing two stationary objects from slipping on their own), kinetic friction (friction between two objects scraping/sliding past each other), or rolling (frictional force which prevents slipping but causes a torque to exert on a round object).
The stress-strain constitutive relation for linear materials is commonly known as Hooke's law. In its simplest form, the law defines the spring constant (or elasticity constant) k in a scalar equation, stating the tensile/compressive force is proportional to the extended (or contracted) displacement x:
meaning the material responds linearly. Equivalently, in terms of the stress σ, Young's modulus E, and strain ε (dimensionless):
In general, forces which deform solids can be normal to a surface of the material (normal forces), or tangential (shear forces), this can be described mathematically using the stress tensor:
where C is the elasticity tensor and S is the compliance tensor.
Several classes of deformations in elastic materials are the following: [4]
The relative speed of separation vseparation of an object A after a collision with another object B is related to the relative speed of approach vapproach by the coefficient of restitution, defined by Newton's experimental impact law: [5]
which depends on the materials A and B are made from, since the collision involves interactions at the surfaces of A and B. Usually 0 ≤ e ≤ 1, in which e = 1 for completely elastic collisions, and e = 0 for completely inelastic collisions. It is possible for e ≥ 1 to occur – for superelastic (or explosive) collisions.
The drag equation gives the drag force D on an object of cross-section area A moving through a fluid of density ρ at velocity v (relative to the fluid)
where the drag coefficient (dimensionless) cd depends on the geometry of the object and the drag forces at the interface between the fluid and object.
For a Newtonian fluid of viscosity μ, the shear stress τ is linearly related to the strain rate (transverse flow velocity gradient) ∂u/∂y (units s−1). In a uniform shear flow:
with u(y) the variation of the flow velocity u in the cross-flow (transverse) direction y. In general, for a Newtonian fluid, the relationship between the elements τij of the shear stress tensor and the deformation of the fluid is given by
where vi are the components of the flow velocity vector in the corresponding xi coordinate directions, eij are the components of the strain rate tensor, Δ is the volumetric strain rate (or dilatation rate) and δij is the Kronecker delta. [6]
The ideal gas law is a constitutive relation in the sense the pressure p and volume V are related to the temperature T, via the number of moles n of gas:
where R is the gas constant (J⋅K−1⋅mol−1).
In both classical and quantum physics, the precise dynamics of a system form a set of coupled differential equations, which are almost always too complicated to be solved exactly, even at the level of statistical mechanics. In the context of electromagnetism, this remark applies to not only the dynamics of free charges and currents (which enter Maxwell's equations directly), but also the dynamics of bound charges and currents (which enter Maxwell's equations through the constitutive relations). As a result, various approximation schemes are typically used.
For example, in real materials, complex transport equations must be solved to determine the time and spatial response of charges, for example, the Boltzmann equation or the Fokker–Planck equation or the Navier–Stokes equations. For example, see magnetohydrodynamics, fluid dynamics, electrohydrodynamics, superconductivity, plasma modeling. An entire physical apparatus for dealing with these matters has developed. See for example, linear response theory, Green–Kubo relations and Green's function (many-body theory).
These complex theories provide detailed formulas for the constitutive relations describing the electrical response of various materials, such as permittivities, permeabilities, conductivities and so forth.
It is necessary to specify the relations between displacement field D and E, and the magnetic H-field H and B, before doing calculations in electromagnetism (i.e. applying Maxwell's macroscopic equations). These equations specify the response of bound charge and current to the applied fields and are called constitutive relations.
Determining the constitutive relationship between the auxiliary fields D and H and the E and B fields starts with the definition of the auxiliary fields themselves:
where P is the polarization field and M is the magnetization field which are defined in terms of microscopic bound charges and bound current respectively. Before getting to how to calculate M and P it is useful to examine the following special cases.
In the absence of magnetic or dielectric materials, the constitutive relations are simple:
where ε0 and μ0 are two universal constants, called the permittivity of free space and permeability of free space, respectively.
In an (isotropic [7] ) linear material, where P is proportional to E, and M is proportional to B, the constitutive relations are also straightforward. In terms of the polarization P and the magnetization M they are:
where χe and χm are the electric and magnetic susceptibilities of a given material respectively. In terms of D and H the constitutive relations are:
where ε and μ are constants (which depend on the material), called the permittivity and permeability, respectively, of the material. These are related to the susceptibilities by:
For real-world materials, the constitutive relations are not linear, except approximately. Calculating the constitutive relations from first principles involves determining how P and M are created from a given E and B. [note 1] These relations may be empirical (based directly upon measurements), or theoretical (based upon statistical mechanics, transport theory or other tools of condensed matter physics). The detail employed may be macroscopic or microscopic, depending upon the level necessary to the problem under scrutiny.
In general, the constitutive relations can usually still be written:
but ε and μ are not, in general, simple constants, but rather functions of E, B, position and time, and tensorial in nature. Examples are:
As a variation of these examples, in general materials are bianisotropic where D and B depend on both E and H, through the additional coupling constantsξ and ζ: [11]
In practice, some materials properties have a negligible impact in particular circumstances, permitting neglect of small effects. For example: optical nonlinearities can be neglected for low field strengths; material dispersion is unimportant when frequency is limited to a narrow bandwidth; material absorption can be neglected for wavelengths for which a material is transparent; and metals with finite conductivity often are approximated at microwave or longer wavelengths as perfect metals with infinite conductivity (forming hard barriers with zero skin depth of field penetration).
Some man-made materials such as metamaterials and photonic crystals are designed to have customized permittivity and permeability.
The theoretical calculation of a material's constitutive equations is a common, important, and sometimes difficult task in theoretical condensed-matter physics and materials science. In general, the constitutive equations are theoretically determined by calculating how a molecule responds to the local fields through the Lorentz force. Other forces may need to be modeled as well such as lattice vibrations in crystals or bond forces. Including all of the forces leads to changes in the molecule which are used to calculate P and M as a function of the local fields.
The local fields differ from the applied fields due to the fields produced by the polarization and magnetization of nearby material; an effect which also needs to be modeled. Further, real materials are not continuous media; the local fields of real materials vary wildly on the atomic scale. The fields need to be averaged over a suitable volume to form a continuum approximation.
These continuum approximations often require some type of quantum mechanical analysis such as quantum field theory as applied to condensed matter physics. See, for example, density functional theory, Green–Kubo relations and Green's function.
A different set of homogenization methods (evolving from a tradition in treating materials such as conglomerates and laminates) are based upon approximation of an inhomogeneous material by a homogeneous effective medium [12] [13] (valid for excitations with wavelengths much larger than the scale of the inhomogeneity). [14] [15] [16] [17]
The theoretical modeling of the continuum-approximation properties of many real materials often rely upon experimental measurement as well. [18] For example, ε of an insulator at low frequencies can be measured by making it into a parallel-plate capacitor, and ε at optical-light frequencies is often measured by ellipsometry.
These constitutive equations are often used in crystallography, a field of solid-state physics. [19]
Property/effect | Stimuli/response parameters of system | Constitutive tensor of system | Equation |
---|---|---|---|
Hall effect |
| ρ, electrical resistivity (Ω⋅m) | |
Direct Piezoelectric Effect |
| d, direct piezoelectric coefficient (C⋅N−1) | |
Converse Piezoelectric Effect |
| d, direct piezoelectric coefficient (C⋅N−1) | |
Piezomagnetic effect |
| q, piezomagnetic coefficient (A⋅N−1⋅m) |
Property/effect | Stimuli/response parameters of system | Constitutive tensor of system | Equation |
---|---|---|---|
Pyroelectricity |
| p, pyroelectric coefficient (C⋅m−2⋅K−1) | |
Electrocaloric effect |
| p, pyroelectric coefficient (C⋅m−2⋅K−1) | |
Seebeck effect |
| β, thermopower (V⋅K−1) | |
Peltier effect |
| Π, Peltier coefficient (W⋅A−1) |
The (absolute) refractive index of a medium n (dimensionless) is an inherently important property of geometric and physical optics defined as the ratio of the luminal speed in vacuum c0 to that in the medium c:
where ε is the permittivity and εr the relative permittivity of the medium, likewise μ is the permeability and μr are the relative permeability of the medium. The vacuum permittivity is ε0 and vacuum permeability is μ0. In general, n (also εr) are complex numbers.
The relative refractive index is defined as the ratio of the two refractive indices. Absolute is for one material, relative applies to every possible pair of interfaces;
As a consequence of the definition, the speed of light in matter is
for special case of vacuum; ε = ε0 and μ = μ0,
The piezooptic effect relates the stresses in solids σ to the dielectric impermeability a, which are coupled by a fourth-rank tensor called the piezooptic coefficient Π (units K−1):
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
General heat capacity | C, heat capacity of substance | J⋅K−1 | [M][L]2[T]−2[Θ]−1 | |
linear thermal expansion coefficient |
| K−1 | [Θ]−1 | |
Volumetric thermal expansion coefficient | β, γ
| K−1 | [Θ]−1 | |
Thermal conductivity | κ, K, λ,
| W⋅m−1⋅K−1 | [M][L][T]−3[Θ]−1 | |
Thermal conductance | U | W⋅m−2⋅K−1 | [M][T]−3[Θ]−1 | |
Thermal resistance | R Δx, displacement of heat transfer (m) | m2⋅K⋅W−1 | [M]−1[L][T]3[Θ] | |
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Electrical resistance | R | Ω, V⋅A−1 = J⋅s⋅C−2 | [M][L]2[T]−3[I]−2 | |
Resistivity | ρ | Ω⋅m | [M]2[L]2[T]−3[I]−2 | |
Resistivity temperature coefficient, linear temperature dependence | α | K−1 | [Θ]−1 | |
Electrical conductance | G | S = Ω−1 | [M]−1[L]−2[T]3[I]2 | |
Electrical conductivity | σ | Ω−1⋅m−1 | [M]−2[L]−2[T]3[I]2 | |
Magnetic reluctance | R, Rm, | A⋅Wb−1 = H−1 | [M]−1[L]−2[T]2 | |
Magnetic permeance | P, Pm, Λ, | Wb⋅A−1 = H | [M][L]2[T]−2 |
There are several laws which describe the transport of matter, or properties of it, in an almost identical way. In every case, in words they read:
In general the constant must be replaced by a 2nd rank tensor, to account for directional dependences of the material.
Property/effect | Nomenclature | Equation |
---|---|---|
Fick's law of diffusion , defines diffusion coefficient D |
| |
Darcy's law for fluid flow in porous media, defines permeability κ |
| |
Ohm's law of electric conduction, defines electric conductivity (and hence resistivity and resistance) |
| Simplest form is: More general forms are: |
Fourier's law of thermal conduction, defines thermal conductivity λ |
| |
Stefan–Boltzmann law of black-body radiation, defines emmisivity ε |
| For a single radiator:
|
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.
An electric field is the physical field that surrounds electrically charged particles. Charged particles exert attractive forces on each other when their charges are opposite, and repulse each other when their charges are the same. Because these forces are exerted mutually, two charges must be present for the forces to take place. The electric field of a single charge describes their capacity to exert such forces on another charged object. These forces are described by Coulomb's law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Thus, we may informally say that the greater the charge of an object, the stronger its electric field. Similarly, an electric field is stronger nearer charged objects and weaker further away. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, Electromagnetism is one of the four fundamental interactions of nature.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.
In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.
Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.
In electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.
The electric-field integral equation is a relationship that allows the calculation of an electric field generated by an electric current distribution.
The Maxwell stress tensor is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the loss angleδ or the corresponding loss tangenttan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.
In materials science, effective medium approximations (EMA) or effective medium theory (EMT) pertain to analytical or theoretical modeling that describes the macroscopic properties of composite materials. EMAs or EMTs are developed from averaging the multiple values of the constituents that directly make up the composite material. At the constituent level, the values of the materials vary and are inhomogeneous. Precise calculation of the many constituent values is nearly impossible. However, theories have been developed that can produce acceptable approximations which in turn describe useful parameters including the effective permittivity and permeability of the materials as a whole. In this sense, effective medium approximations are descriptions of a medium based on the properties and the relative fractions of its components and are derived from calculations, and effective medium theory. There are two widely used formulae.
Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation. The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations. In doing so, expressions for various transport coefficients such as thermal conductivity and viscosity are obtained in terms of molecular parameters. Thus, Chapman–Enskog theory constitutes an important step in the passage from a microscopic, particle-based description to a continuum hydrodynamical one.
In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.
In electromagnetism, a branch of fundamental physics, the matrix representations of the Maxwell's equations are a formulation of Maxwell's equations using matrices, complex numbers, and vector calculus. These representations are for a homogeneous medium, an approximation in an inhomogeneous medium. A matrix representation for an inhomogeneous medium was presented using a pair of matrix equations. A single equation using 4 × 4 matrices is necessary and sufficient for any homogeneous medium. For an inhomogeneous medium it necessarily requires 8 × 8 matrices.
The optical metric was defined by German theoretical physicist Walter Gordon in 1923 to study the geometrical optics in curved space-time filled with moving dielectric materials.
In geotechnical engineering, rock mass plasticity is the study of the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture, while plasticity is identified with ductile materials such as metals. In field-scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last word.
{{cite book}}
: |author=
has generic name (help)CS1 maint: multiple names: authors list (link){{cite book}}
: |author=
has generic name (help){{cite book}}
: |author=
has generic name (help)