In the physics of continuous media, spatial dispersion is usually described as a phenomenon where material parameters such as permittivity or conductivity have dependence on wavevector. Normally such a dependence is assumed to be absent for simplicity, however spatial dispersion exists to varying degrees in all materials.
The underlying physical reason for the wavevector dependence is often that the material has some spatial structure smaller than the wavelength of any signals (such as light or sound) being considered. Since these small spatial structures cannot be resolved by the waves, only indirect effects (e.g. wavevector dependence) remain detectable. An example of spatial dispersion is that of visible light propagating through a crystal such as calcite, where the refractive index depends on the direction of travel (the orientation of the wavevector) with respect to the crystal structure. In such a case, although the light cannot resolve the individual atoms, they nevertheless can as an aggregate affect how the light propagates. Another common mechanism is that the (e.g.) light is coupled to an excitation of the material, such as a plasmon.
Spatial dispersion can be compared to temporal dispersion, the latter often just called dispersion. Temporal dispersion represents memory effects in systems, commonly seen in optics and electronics. Spatial dispersion on the other hand represents spreading effects and is usually significant only at microscopic length scales. Spatial dispersion contributes relatively small perturbations to optics, providing weak effects such as optical activity. Spatial dispersion and temporal dispersion may occur in the same system.
The origin of spatial dispersion can be modelled as a nonlocal response, where response to a force field appears at many locations, and can appear even in locations where the force is zero. This usually arises due to a spreading of effects by the hidden microscopic degrees of freedom. [1]
As an example, consider the current that is driven in response to an electric field , which is varying in space (x) and time (t). Simplified laws such as Ohm's law would say that these are directly proportional to each other, , but this breaks down if the system has memory (temporal dispersion) or spreading (spatial dispersion). The most general linear response is given by:
where is the nonlocal conductivity function.
If the system is invariant in time (time translation symmetry) and invariant in space (space translation symmetry), then we can simplify because for some convolution kernel . We can also consider plane wave solutions for and like so:
which yields a remarkably simple relationship between the two plane waves' complex amplitudes:
where the function is given by a Fourier transform of the space-time response function:
The conductivity function has spatial dispersion if it is dependent on the wavevector k. This occurs if the spatial function is not pointlike (delta function) response in x-x' .
In electromagnetism, spatial dispersion plays a role in a few material effects such as optical activity and doppler broadening. Spatial dispersion also plays an important role in the understanding of electromagnetic metamaterials. Most commonly, the spatial dispersion in permittivity ε is of interest.
Inside crystals there may be a combination of spatial dispersion, temporal dispersion, and anisotropy. [2] The constitutive relation for the polarization vector can be written as:
i.e., the permittivity is a wavevector- and frequency-dependent tensor.
Considering Maxwell's equations, one can find the plane wave normal modes inside such crystals. These occur when the following relationship is satisfied for a nonzero electric field vector : [2]
Spatial dispersion in can lead to strange phenomena, such as the existence of multiple modes at the same frequency and wavevector direction, but with different wavevector magnitudes.
Nearby crystal surfaces and boundaries, it is no longer valid to describe system response in terms of wavevectors. For a full description it is necessary to return to a full nonlocal response function (without translational symmetry), however the end effect can sometimes be described by "additional boundary conditions" (ABC's).
This section needs expansion. You can help by adding to it. (December 2015) |
In materials that have no relevant crystalline structure, spatial dispersion can be important.
Although symmetry demands that the permittivity is isotropic for zero wavevector, this restriction does not apply for nonzero wavevector. The non-isotropic permittivity for nonzero wavevector leads to effects such as optical activity in solutions of chiral molecules. In isotropic materials without optical activity, the permittivity tensor can be broken down to transverse and longitudinal components, referring to the response to electric fields either perpendicular or parallel to the wavevector. [1]
For frequencies nearby an absorption line (e.g., an exciton), spatial dispersion can play an important role. [1]
This section needs expansion. You can help by adding to it. (December 2015) |
In plasma physics, a wave can be collisionlessly damped by particles in the plasma whose velocity matches the wave's phase velocity. This is typically represented as a spatially dispersive loss in the plasma's permittivity.
This section needs expansion. You can help by adding to it. (December 2015) |
At nonzero frequencies, it is possible to represent all magnetizations as time-varying polarizations. Moreover, since the electric and magnetic fields are directly related by , the magnetization induced by a magnetic field can be represented instead as a polarization induced by the electric field, though with a highly dispersive relationship.
What this means is that at nonzero frequency, any contribution to permeability μ can instead be alternatively represented by a spatially dispersive contribution to permittivity ε. The values of the permeability and permittivity are different in this alternative representation, however this leads to no observable differences in real quantities such as electric field, magnetic flux density, magnetic moments, and current.
As a result, it is most common at optical frequencies to set μ to the vacuum permeability μ0 and only consider a dispersive permittivity ε. [1] There is some discussion over whether this is appropriate in metamaterials where effective medium approximations for μ are used, and debate over the reality of "negative permeability" seen in negative index metamaterials. [3]
In acoustics, especially in solids, spatial dispersion can be significant for wavelengths comparable to the lattice spacing, which typically occurs at very high frequencies (gigahertz and above).
In solids, the difference in propagation for transverse acoustic modes and longitudinal acoustic modes of sound is due to a spatial dispersion in the elasticity tensor which relates stress and strain. For polar vibrations (optical phonons), the distinction between longitudinal and transverse modes can be seen as a spatial dispersion in the restoring forces, from the "hidden" non-mechanical degree of freedom that is the electromagnetic field.
Many electromagnetic wave effects from spatial dispersion find an analogue in acoustic waves. For example, there is acoustical activity — the rotation of the polarization plane of transverse sound waves — in chiral materials, [4] analogous to optical activity.
The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space.
Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.
In electromagnetism, a dielectric is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarised, but also reorient so that their symmetry axes align to the field.
The relative permittivity is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.
A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle in physics, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves.
In the physical sciences, the wavenumber, also known as repetency, is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time or radians per unit time.
The reciprocal lattice is a term associated with solids with translational symmetry, and plays a major role in many areas such as X-ray and electron diffraction as well as the energies of electrons in a solid. It emerges from the Fourier transform of the lattice associated with the arrangement of the atoms. The direct lattice or real lattice is a periodic function in physical space, such as a crystal system. The reciprocal lattice exists in the mathematical space of spatial frequencies, known as reciprocal space or k space, which is the dual of physical space considered as a vector space, and the reciprocal lattice is the sublattice of that space that is dual to the direct lattice.
In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.
Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.
In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function. Gaussian filters have the properties of having no overshoot to a step function input while minimizing the rise and fall time. This behavior is closely connected to the fact that the Gaussian filter has the minimum possible group delay. A Gaussian filter will have the best combination of suppression of high frequencies while also minimizing spatial spread, being the critical point of the uncertainty principle. These properties are important in areas such as oscilloscopes and digital telecommunication systems.
In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the loss angleδ or the corresponding loss tangenttan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.
Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.
When an electromagnetic wave travels through a medium in which it gets attenuated, it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:
Optical conductivity is the property of a material which gives the relationship between the induced current density in the material and the magnitude of the inducing electric field for arbitrary frequencies. This linear response function is a generalization of the electrical conductivity, which is usually considered in the static limit, i.e., for time-independent or slowly varying electric fields.
Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal and electromagnetic waves in the air or dielectric ("polariton").
In condensed matter physics, the Lyddane–Sachs–Teller relation determines the ratio of the natural frequency of longitudinal optic lattice vibrations (phonons) of an ionic crystal to the natural frequency of the transverse optical lattice vibration for long wavelengths. The ratio is that of the static permittivity to the permittivity for frequencies in the visible range .
Spoof surface plasmons, also known as spoof surface plasmon polaritons and designer surface plasmons, are surface electromagnetic waves in microwave and terahertz regimes that propagate along planar interfaces with sign-changing permittivities. Spoof surface plasmons are a type of surface plasmon polariton, which ordinarily propagate along metal and dielectric interfaces in infrared and visible frequencies. Since surface plasmon polaritons cannot exist naturally in microwave and terahertz frequencies due to dispersion properties of metals, spoof surface plasmons necessitate the use of artificially-engineered metamaterials.
The Brendel–Bormann oscillator model is a mathematical formula for the frequency dependence of the complex-valued relative permittivity, sometimes referred to as the dielectric function. The model has been used to fit to the complex refractive index of materials with absorption lineshapes exhibiting non-Lorentzian broadening, such as metals and amorphous insulators, across broad spectral ranges, typically near-ultraviolet, visible, and infrared frequencies. The dispersion relation bears the names of R. Brendel and D. Bormann, who derived the model in 1992, despite first being applied to optical constants in the literature by Andrei M. Efimov and E. G. Makarova in 1983. Around that time, several other researchers also independently discovered the model. The Brendel-Bormann oscillator model is aphysical because it does not satisfy the Kramers–Kronig relations. The model is non-causal, due to a singularity at zero frequency, and non-Hermitian. These drawbacks inspired J. Orosco and C. F. M. Coimbra to develop a similar, causal oscillator model.
In condensed matter physics, a phonon polariton is a type of quasiparticle that can form in a diatomic ionic crystal due to coupling of transverse optical phonons and photons. They are particular type of polariton, which behave like bosons. Phonon polaritons occur in the region where the wavelength and energy of phonons and photons are similar, as to adhere to the avoided crossing principle.