Heat flux

Last updated
Heat flux
Heatflux.png
Heat flux through a surface.
Common symbols
SI unit W/m2
Other units
Btu/(h⋅ft2)
In SI base units kg⋅s−3
Dimension

In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density [1] , heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m2). It has both a direction and a magnitude, and so it is a vector quantity. To define the heat flux at a certain point in space, one takes the limiting case where the size of the surface becomes infinitesimally small.

Contents

Heat flux is often denoted , the subscript q specifying heat flux, as opposed to mass or momentum flux. Fourier's law is an important application of these concepts.

Fourier's law

For most solids in usual conditions, heat is transported mainly by conduction and the heat flux is adequately described by Fourier's law.

Fourier's law in one dimension

where is the thermal conductivity. The negative sign shows that heat flux moves from higher temperature regions to lower temperature regions.

Multi-dimensional extension

Diagram depicting heat flux through a thermal insulation material with thermal conductivity, k, and thickness, x. Heat flux can be determined using two surface temperature measurements on either side of the material using temperature sensors if k and x of the material are also known. Heat Flux from Temperature Differential Across Thermal Insulation.png
Diagram depicting heat flux through a thermal insulation material with thermal conductivity, k, and thickness, x. Heat flux can be determined using two surface temperature measurements on either side of the material using temperature sensors if k and x of the material are also known.
Diagram depicting heat flux through a thermal insulation material with thermal conductivity, k, and thickness, x. Heat flux can be directly measured using a single heat flux sensor located on either surface or embedded within the material. Using this method, knowing the values of k and x of the material are not required. Measuring Heat Flux Through Thermal Insulation Using A Heat Flux Sensor.png
Diagram depicting heat flux through a thermal insulation material with thermal conductivity, k, and thickness, x. Heat flux can be directly measured using a single heat flux sensor located on either surface or embedded within the material. Using this method, knowing the values of k and x of the material are not required.

The multi-dimensional case is similar, the heat flux goes "down" and hence the temperature gradient has the negative sign:

where is the gradient operator.

Measurement

The measurement of heat flux can be performed in a few different manners.

With a given thermal conductivity

A commonly known, but often impractical, method is performed by measuring a temperature difference over a piece of material with a well-known thermal conductivity. This method is analogous to a standard way to measure an electric current, where one measures the voltage drop over a known resistor. Usually this method is difficult to perform since the thermal resistance of the material being tested is often not known. Accurate values for the material's thickness and thermal conductivity would be required in order to determine thermal resistance. Using the thermal resistance, along with temperature measurements on either side of the material, heat flux can then be indirectly calculated.

With unknown thermal conductivity

A second method of measuring heat flux is by using a heat flux sensor, or heat flux transducer, to directly measure the amount of heat being transferred to/from the surface that the heat flux sensor is mounted to. The most common type of heat flux sensor is a differential temperature thermopile which operates on essentially the same principle as the first measurement method that was mentioned except it has the advantage in that the thermal resistance/conductivity does not need to be a known parameter. These parameters do not have to be known since the heat flux sensor enables an in-situ measurement of the existing heat flux by using the Seebeck effect. However, differential thermopile heat flux sensors have to be calibrated in order to relate their output signals [μV] to heat flux values [W/(m2⋅K)]. Once the heat flux sensor is calibrated it can then be used to directly measure heat flux without requiring the rarely known value of thermal resistance or thermal conductivity.

Science and engineering

One of the tools in a scientist's or engineer's toolbox is the energy balance. Such a balance can be set up for any physical system, from chemical reactors to living organisms, and generally takes the following form

where the three terms stand for the time rate of change of respectively the total amount of incoming energy, the total amount of outgoing energy and the total amount of accumulated energy.

Now, if the only way the system exchanges energy with its surroundings is through heat transfer, the heat rate can be used to calculate the energy balance, since

where we have integrated the heat flux over the surface of the system.

In real-world applications one cannot know the exact heat flux at every point on the surface, but approximation schemes can be used to calculate the integral, for example Monte Carlo integration.

See also

Notes

  1. The word "flux" is used in most physical disciplines to refer to the flow of a quantity (mass, heat, momentum, etc.) across a surface per unit time per unit area, with the primary exception being in electromagnetism, where it refers to the integral of a vector quantity through a surface. Refer to the Flux article for more detail.

Related Research Articles

Flux describes any effect that appears to pass or travel through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface.

In thermal fluid dynamics, the Nusselt number is the ratio of convective to conductive heat transfer at a boundary in a fluid. Convection includes both advection and diffusion (conduction). The conductive component is measured under the same conditions as the convective but for a hypothetically motionless fluid. It is a dimensionless number, closely related to the fluid's Rayleigh number.

The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and is measured in W·m−1·K−1.

<span class="mw-page-title-main">Kinetic theory of gases</span> Understanding of gas properties in terms of molecular motion

The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. It treats a gas as composed of numerous particles, too small to see with a microscope, which are constantly in random motion. Their collisions with each other and with the walls of their container are used to explain physical properties of the gas—for example the relationship between its temperature, pressure and volume. The particles are now known to be the atoms or molecules of the gas.

Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k.

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862). The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body. This ratio indicates whether the temperature inside a body varies significantly in space when the body is heated or cooled over time by a heat flux at its surface.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<i>R</i>-value (insulation) Measure of how well an object, per unit of area, resists conductive flow of heat

In the context of construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Electrostatics</span> Study of stationary or slow-moving electric charges

Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.

Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences. It is analogous to Ohm's law in electrostatics, linearly relating the volume flow rate of the fluid to the hydraulic head difference via the hydraulic conductivity. In fact, the Darcy's law is a special case of the Stokes equation for the momentum flux, in turn deriving from the momentum Navier-Stokes equation.

In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat. It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/m²K).

<span class="mw-page-title-main">Radiant flux</span> Measure of radiant energy over time

In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), one joule per second, while that of spectral flux in frequency is the watt per hertz and that of spectral flux in wavelength is the watt per metre —commonly the watt per nanometre.

In radiometry, radiosity is the radiant flux leaving a surface per unit area, and spectral radiosity is the radiosity of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiosity is the watt per square metre, while that of spectral radiosity in frequency is the watt per square metre per hertz (W·m−2·Hz−1) and that of spectral radiosity in wavelength is the watt per square metre per metre (W·m−3)—commonly the watt per square metre per nanometre. The CGS unit erg per square centimeter per second is often used in astronomy. Radiosity is often called intensity in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

<span class="mw-page-title-main">HydroGeoSphere</span>

HydroGeoSphere (HGS) is a 3D control-volume finite element groundwater model, and is based on a rigorous conceptualization of the hydrologic system consisting of surface and subsurface flow regimes. The model is designed to take into account all key components of the hydrologic cycle. For each time step, the model solves surface and subsurface flow, solute and energy transport equations simultaneously, and provides a complete water and solute balance.

<span class="mw-page-title-main">Heat flux sensor</span> Sensor which measures heat transfer

A heat flux sensor is a transducer that generates an electrical signal proportional to the total heat rate applied to the surface of the sensor. The measured heat rate is divided by the surface area of the sensor to determine the heat flux.

There are a number of possible ways to measure thermal conductivity, each of them suitable for a limited range of materials, depending on the thermal properties and the medium temperature. Three classes of methods exist to measure the thermal conductivity of a sample: steady-state, time-domain, and frequency-domain methods.

In heat transfer, thermal engineering, and thermodynamics, thermal conductance and thermal resistance are fundamental concepts that describe the ability of materials or systems to conduct heat and the opposition they offer to the heat current. The ability to manipulate these properties allows engineers to control temperature gradient, prevent thermal shock, and maximize the efficiency of thermal systems. Furthermore, these principles find applications in a multitude of fields, including materials science, mechanical engineering, electronics, and energy management. Knowledge of these principles is crucial in various scientific, engineering, and everyday applications, from designing efficient temperature control, thermal insulation, and thermal management in industrial processes to optimizing the performance of electronic devices.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

<span class="mw-page-title-main">Heat flux measurements of thermal insulation</span>

Heat flux measurements of thermal insulation are applied in laboratory and industrial environments to obtain reference or in-situ measurements of the thermal properties of an insulation material. Thermal insulation is tested using nondestructive testing techniques relying on heat flux sensors. Procedures and requirements for in-situ measurements are standardized in ASTM C1041 standard: "Standard Practice for In-Situ Measurements of Heat Flux in Industrial Thermal Insulation Using Heat Flux Transducers".