Electrocaloric effect

Last updated

The electrocaloric effect is a phenomenon in which a material shows a reversible temperature change under an applied electric field. It is often considered to be the physical inverse of the pyroelectric effect.

Contents

Mechanism

The electrocaloric effect should not be confused with the Thermoelectric effect (specifically, the Peltier effect), in which a temperature difference occurs when a current is driven through an electric junction with two dissimilar conductors.

The underlying mechanism of the effect is not fully established; in particular, different textbooks give conflicting explanations. [1] However, as with any isolated (adiabatic) temperature change, the effect comes from the voltage raising or lowering the entropy of the system. [2] (The magnetocaloric effect is an analogous, but better-known and understood, phenomenon.)

Research history

Electrocaloric materials were the focus of significant scientific interest in the 1960s and 1970s, but were not commercially exploited as the electrocaloric effects were insufficient for practical applications, the highest response being 2.5 degrees Celsius under an applied potential of 750 volts. [1]

In March 2006 it was reported in the journal Science that thin films of the material PZT (a mixture of lead, titanium, oxygen and zirconium) showed the strongest electrocalorific response yet reported, with the materials cooling down by as much as ~12 K (12 °C) for an electric field change of 480 kV/cm, at an ambient temperature of 220 °C (430 °F). [1] The device structure consisted of a thin film (PZT) on top of a much thicker substrate, but the figure of 12 K represents the cooling of the thin film only. The net cooling of such a device would be lower than 12 K due to the heat capacity of the substrate to which it is attached.

Along the same lines, in 2008, it was shown that a ferroelectric polymer can also achieve 12 K of cooling, nearer to room temperature (yet above 70 °C) than PZT. [3]

In 2023, researchers at the Luxembourg Institute of Science and Technology developed a device capable of creating a temperature difference of 20 K, with further optimizations possible to bring the technology closer to competing with other methods of cooling. [4]

With these new, larger responses, practical applications may be more likely, such as in computer cooling or batteries. [5] In the long-term the electrocaloric effect might moreover be used in high-efficiency heat pumps. [6]

Related Research Articles

<span class="mw-page-title-main">Piezoelectricity</span> Electric charge generated in certain solids due to mechanical stress

Piezoelectricity is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived from Ancient Greek πιέζω (piézō) 'to squeeze or press', and ἤλεκτρον (ḗlektron) 'amber'. The German form of the word (Piezoelektricität) was coined in 1881 by the German physicist Wilhelm Gottlieb Hankel; the English word was coined in 1883.

<span class="mw-page-title-main">Dielectric</span> Electrically insulating substance able to be polarised by an applied electric field

In electromagnetism, a dielectric is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarised, but also reorient so that their symmetry axes align to the field.

Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the additional property that their natural electrical polarization is reversible. The term is used in analogy to ferromagnetism, in which a material exhibits a permanent magnetic moment. Ferromagnetism was already known when ferroelectricity was discovered in 1920 in Rochelle salt by Joseph Valasek. Thus, the prefix ferro, meaning iron, was used to describe the property despite the fact that most ferroelectric materials do not contain iron. Materials that are both ferroelectric and ferromagnetic are known as multiferroics.

<span class="mw-page-title-main">Pyroelectricity</span> Voltage created when a crystal is heated

Pyroelectricity is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields. Pyroelectricity can be described as the ability of certain materials to generate a temporary voltage when they are heated or cooled. The change in temperature modifies the positions of the atoms slightly within the crystal structure, so that the polarization of the material changes. This polarization change gives rise to a voltage across the crystal. If the temperature stays constant at its new value, the pyroelectric voltage gradually disappears due to leakage current. The leakage can be due to electrons moving through the crystal, ions moving through the air, or current leaking through a voltmeter attached across the crystal.

<span class="mw-page-title-main">Radiative cooling</span> Loss of heat by thermal radiation

In the study of heat transfer, radiative cooling is the process by which a body loses heat by thermal radiation. As Planck's law describes, every physical body spontaneously and continuously emits electromagnetic radiation.

<span class="mw-page-title-main">Polyvinylidene fluoride</span> Non-reactive thermoplastic fluoropolymer

Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride. Its chemical formula is (C2H2F2)n.

Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data.

<span class="mw-page-title-main">Smart glass</span> Glass with electrically switchable opacity

Smart glass, also known as switchable glass, dynamic glass, and smart-tinting glass, is a type of glass that can change its reflective properties to prevent sunlight and heat from entering a building and to also provide privacy. Smart glass for building aims to provide more energy-efficient buildings by reducing the amount of solar heat that passes through glass windows.

A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as magnetic recording media, electronic semiconductor devices, integrated passive devices, LEDs, optical coatings, hard coatings on cutting tools, and for both energy generation and storage. It is also being applied to pharmaceuticals, via thin-film drug delivery. A stack of thin films is called a multilayer.

<span class="mw-page-title-main">Lead zirconate titanate</span> Chemical compound

Lead zirconate titanate, also called lead zirconium titanate and commonly abbreviated as PZT, is an inorganic compound with the chemical formula Pb[ZrxTi1−x]O3(0 ≤ x ≤ 1). It is a ceramic perovskite material that shows a marked piezoelectric effect, meaning that the compound changes shape when an electric field is applied. It is used in a number of practical applications such as ultrasonic transducers and piezoelectric resonators. It is a white to off-white solid.

Energy harvesting (EH) – also known as power harvesting,energy scavenging, or ambient power – is the process by which energy is derived from external sources, then stored for use by small, wireless autonomous devices, like those used in wearable electronics, condition monitoring, and wireless sensor networks.

<span class="mw-page-title-main">Electroactive polymer</span>

An electroactive polymer (EAP) is a polymer that exhibits a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators and sensors. A typical characteristic property of an EAP is that they will undergo a large amount of deformation while sustaining large forces.

Multiferroics are defined as materials that exhibit more than one of the primary ferroic properties in the same phase:

<span class="mw-page-title-main">Barium titanate</span> Chemical compound

Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material that exhibits the photorefractive effect. It is used in capacitors, electromechanical transducers and nonlinear optics.

<span class="mw-page-title-main">Hafnium(IV) oxide</span> Chemical compound

Hafnium(IV) oxide is the inorganic compound with the formula HfO
2
. Also known as hafnium dioxide or hafnia, this colourless solid is one of the most common and stable compounds of hafnium. It is an electrical insulator with a band gap of 5.3~5.7 eV. Hafnium dioxide is an intermediate in some processes that give hafnium metal.

Bismuth ferrite (BiFeO3, also commonly referred to as BFO in materials science) is an inorganic chemical compound with perovskite structure and one of the most promising multiferroic materials. The room-temperature phase of BiFeO3 is classed as rhombohedral belonging to the space group R3c. It is synthesized in bulk and thin film form and both its antiferromagnetic (G type ordering) Néel temperature (approximately 653 K) and ferroelectric Curie temperature are well above room temperature (approximately 1100K). Ferroelectric polarization occurs along the pseudocubic direction () with a magnitude of 90–95 μC/cm2.

The exceptional electrical and mechanical properties of carbon nanotubes have made them alternatives to the traditional electrical actuators for both microscopic and macroscopic applications. Carbon nanotubes are very good conductors of both electricity and heat, and are also very strong and elastic molecules in certain directions. These properties are difficult to find in the same material and very needed for high performance actuators. For current carbon nanotube actuators, multi-walled carbon nanotubes (MWNTs) and bundles of MWNTs have been widely used mostly due to the easiness of handling and robustness. Solution dispersed thick films and highly ordered transparent films of carbon nanotubes have been used for the macroscopic applications.

<span class="mw-page-title-main">Ferroelectric polymer</span> Group of crystalline polar polymers that are also ferroelectric

Ferroelectric polymers are a group of crystalline polar polymers that are also ferroelectric, meaning that they maintain a permanent electric polarization that can be reversed, or switched, in an external electric field.

Electronic skin refers to flexible, stretchable and self-healing electronics that are able to mimic functionalities of human or animal skin. The broad class of materials often contain sensing abilities that are intended to reproduce the capabilities of human skin to respond to environmental factors such as changes in heat and pressure.

<span class="mw-page-title-main">Passive daytime radiative cooling</span> Management strategy for global warming

Passive daytime radiative cooling (PDRC) is a zero-energy building cooling method proposed as a solution to reduce air conditioning, lower urban heat island effect, cool human body temperatures in extreme heat, move toward carbon neutrality and control global warming by enhancing terrestrial heat flow to outer space through the installation of thermally-emissive surfaces on Earth that require zero energy consumption or pollution. In contrast to compression-based cooling systems that are prevalently used, consume substantial amounts of energy, have a net heating effect, require ready access to electricity and often require coolants that are ozone-depleting or have a strong greenhouse effect, application of PDRCs may also increase the efficiency of systems benefiting from a better cooling, such like photovoltaic systems, dew collection techniques, and thermoelectric generators.

References

  1. 1 2 3 A. S. Mischenko; et al. (March 2006). "Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3". Science. 311 (5765): 1270–1271. arXiv: cond-mat/0511487 . Bibcode:2006Sci...311.1270M. doi:10.1126/science.1123811. PMID   16513978. S2CID   10153472.
  2. See Reif
  3. Neese, B.; Chu, B.; Lu, S. -G.; Wang, Y.; Furman, E.; Zhang, Q. M. (2008). "Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature". Science. 321 (5890): 821–823. Bibcode:2008Sci...321..821N. doi:10.1126/science.1159655. PMID   18687960. S2CID   206513719., alternate web link.
  4. Junning Li; et al. (2023). "High cooling performance in a double-loop electrocaloric heat pump". Science. 382: 801–805. doi:10.1126/science.adi5477.
  5. Fairley, Peter (14 September 2017). "A Solid-State Fridge in Your Pocket". IEEE Spectrum . Retrieved 15 September 2017.
  6. "ElKaWe – Electrocaloric heat pumps". Fraunhofer-Gesellschaft. Retrieved 2023-07-22.

Further reading