Plasma modeling refers to solving equations of motion that describe the state of a plasma. It is generally coupled with Maxwell's equations for electromagnetic fields or Poisson's equation for electrostatic fields. There are several main types of plasma models: single particle, kinetic, fluid, hybrid kinetic/fluid, gyrokinetic and as system of many particles.
The single-particle model describes the plasma as individual electrons and ions moving in imposed (rather than self-consistent) electric and magnetic fields. The motion of each particle is thus described by the Lorentz Force Law. In many cases of practical interest, this motion can be treated as the superposition of a relatively fast circular motion around a point called the guiding center and a relatively slow drift of this point.
The kinetic model is the most fundamental way to describe a plasma, resultantly producing a distribution function
where the independent variables and are position and velocity, respectively. A kinetic description is achieved by solving the Boltzmann equation or, when the correct description of long-range Coulomb interaction is necessary, by the Vlasov equation which contains self-consistent collective electromagnetic field, or by the Fokker–Planck equation, in which approximations have been used to derive manageable collision terms. The charges and currents produced by the distribution functions self-consistently determine the electromagnetic fields via Maxwell's equations.
To reduce the complexities in the kinetic description, the fluid model describes the plasma based on macroscopic quantities (velocity moments of the distribution such as density, mean velocity, and mean energy). The equations for macroscopic quantities, called fluid equations, are obtained by taking velocity moments of the Boltzmann equation or the Vlasov equation. The fluid equations are not closed without the determination of transport coefficients such as mobility, diffusion coefficient, averaged collision frequencies, and so on. To determine the transport coefficients, the velocity distribution function must be assumed/chosen. But this assumption can lead to a failure of capturing some physics.
Although the kinetic model describes the physics accurately, it is more complex (and in the case of numerical simulations, more computationally intensive) than the fluid model. The hybrid model is a combination of fluid and kinetic models, treating some components of the system as a fluid, and others kinetically. The hybrid model is sometimes applied in space physics, when the simulation domain exceeds thousands of ion gyroradius scales, making it impractical to solve kinetic equations for electrons. In this approach, magnetohydrodynamic fluid equations describe electrons, while the kinetic Vlasov equation describes ions. [1] [2]
In the gyrokinetic model, which is appropriate to systems with a strong background magnetic field, the kinetic equations are averaged over the fast circular motion of the gyroradius. This model has been used extensively for simulation of tokamak plasma instabilities (for example, the GYRO and Gyrokinetic ElectroMagnetic codes), and more recently in astrophysical applications.
Quantum methods are not yet very common in plasma modeling. They can be used to solve unique modeling problems; like situations where other methods do not apply. [3] They involve the application of quantum field theory to plasma. In these cases, the electric and magnetic fields made by particles are modeled like a field; A web of forces. Particles that move, or are removed from the population push and pull on this web of forces, this field. The mathematical treatment for this involves Lagrangian mathematics.
Collisional-radiative modeling is used to calculate quantum state densities and the emission/absorption properties of a plasma. This plasma radiation physics is critical for the diagnosis and simulation of astrophysical and nuclear fusion plasma. [4] It is one of the most general approaches [5] and lies between the extrema of a local thermal equilibrium and a coronal picture. In a local thermal equilibrium the population of excited states is distributed according to a Boltzmann distribution. However, this holds only if densities are high enough for an excited hydrogen atom to undergo many collisions such that the energy is distributed before the radiative process sets in. In a coronal picture the timescale of the radiative process is small compared to the collisions since densities are very small. [6] The use of the term coronal equilibrium is ambiguous and may also refer to the non-transport ionization balance of recombination and ionization. The only thing they have in common is that a coronal equilibrium is not sufficient for tokamak plasma. [7]
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, neuroscience, computer science, information theory and sociology. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion.
A magnetic sail is a proposed method of spacecraft propulsion where an onboard magnetic field source interacts with a plasma wind to form an artificial magnetosphere that acts as a sail, transferring force from the wind to the spacecraft requiring little to no propellant as detailed for each proposed magnetic sail design in this article.
In physics and engineering, magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in multiple fields including space physics, geophysics, astrophysics, and engineering.
Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles and dynamics, which enable to derive plasma parameters.
In plasma physics, the particle-in-cell (PIC) method refers to a technique used to solve a certain class of partial differential equations. In this method, individual particles in a Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents are computed simultaneously on Eulerian (stationary) mesh points.
The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium; it was devised by Ludwig Boltzmann in 1872. The classic example of such a system is a fluid with temperature gradients in space causing heat to flow from hotter regions to colder ones, by the random but biased transport of the particles making up that fluid. In the modern literature the term Boltzmann equation is often used in a more general sense, referring to any kinetic equation that describes the change of a macroscopic quantity in a thermodynamic system, such as energy, charge or particle number.
Magnetic reconnection is a physical process occurring in electrically conducting plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection involves plasma flows at a substantial fraction of the Alfvén wave speed, which is the fundamental speed for mechanical information flow in a magnetized plasma.
In a plasma, the Boltzmann relation describes the number density of an isothermal charged particle fluid when the thermal and the electrostatic forces acting on the fluid have reached equilibrium.
In plasma physics, the Vlasov equation is a differential equation describing time evolution of the distribution function of collisionless plasma consisting of charged particles with long-range interaction, such as the Coulomb interaction. The equation was first suggested for the description of plasma by Anatoly Vlasov in 1938 and later discussed by him in detail in a monograph. The Vlasov equation, combined with Landau kinetic equation describe collisional plasma.
The diffusion of plasma across a magnetic field was conjectured to follow the Bohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and inversely linear with the strength of the confining magnetic field.
Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged and neutral particles of various species that responds collectively to electromagnetic forces. Such particle systems can be studied statistically, i.e., their behaviour can be described based on a limited number of global parameters instead of tracking each particle separately.
The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.
A pinch is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power.
In plasma physics, the Hasegawa–Mima equation, named after Akira Hasegawa and Kunioki Mima, is an equation that describes a certain regime of plasma, where the time scales are very fast, and the distance scale in the direction of the magnetic field is long. In particular the equation is useful for describing turbulence in some tokamaks. The equation was introduced in Hasegawa and Mima's paper submitted in 1977 to Physics of Fluids, where they compared it to the results of the ATC tokamak.
Gyrokinetic ElectroMagnetic (GEM) is a gyrokinetic plasma turbulence simulation that uses the particle-in-cell method. It is used to study waves, instabilities and nonlinear behavior of tokamak fusion plasmas. Information about GEM can be found at the GEM web page. There are two versions of GEM, one is a flux-tube version and the other one is a global general geometry version. Both versions of GEM use a field-aligned coordinate system. Ions are treated kinetically, but averaged over their gyro-obits and electrons are treated as drift-kinetic.
Gyrokinetics is a theoretical framework to study plasma behavior on perpendicular spatial scales comparable to the gyroradius and frequencies much lower than the particle cyclotron frequencies. These particular scales have been experimentally shown to be appropriate for modeling plasma turbulence. The trajectory of charged particles in a magnetic field is a helix that winds around the field line. This trajectory can be decomposed into a relatively slow motion of the guiding center along the field line and a fast circular motion, called gyromotion. For most plasma behavior, this gyromotion is irrelevant. Averaging over this gyromotion reduces the equations to six dimensions rather than the seven. Because of this simplification, gyrokinetics governs the evolution of charged rings with a guiding center position, instead of gyrating charged particles.
Liu Chen is an American theoretical physicist who has made original contributions to many aspects of plasma physics. He is known for the discoveries of kinetic Alfven waves, toroidal Alfven eigenmodes, and energetic particle modes; the theories of geomagnetic pulsations, Alfven wave heating, and fishbone oscillations, and the first formulation of nonlinear gyrokinetic equations. Chen retired from University of California, Irvine (UCI) in 2012, assuming the title professor emeritus of physics and astronomy.
Plasma is one of four fundamental states of matter characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars, but also dominating the rarefied intracluster medium and intergalactic medium. Plasma can be artificially generated, for example, by heating a neutral gas or subjecting it to a strong electromagnetic field.
Classical diffusion is a key concept in fusion power and other fields where a plasma is confined by a magnetic field within a vessel. It considers collisions between ions in the plasma that causes the particles to move to different paths and eventually leave the confinement volume and strike the sides of the vessel.
Harold Weitzner is an American applied mathematician and physicist whose primary research is plasma physics. He is Professor Emeritus of Mathematics at the Courant Institute of Mathematical Sciences and has served as Director of the Magneto-Fluid Dynamics Division at Courant since 1981, succeeding Harold Grad. He has published over 120 research articles on the topics of plasma physics, magnetohydrodynamics, fluid mechanics, fractional equations and kinetics, and chaos.