Guiding center

Last updated
Charged particle drifts in a homogeneous magnetic field. (A) No disturbing force (B) With an electric field, E (C) With an independent force, F (e.g. gravity) (D) In an inhomogeneous magnetic field, grad H Charged-particle-drifts.svg
Charged particle drifts in a homogeneous magnetic field. (A) No disturbing force (B) With an electric field, E (C) With an independent force, F (e.g. gravity) (D) In an inhomogeneous magnetic field, grad H

In physics, the motion of an electrically charged particle such as an electron or ion in a plasma in a magnetic field can be treated as the superposition of a relatively fast circular motion around a point called the guiding center and a relatively slow drift of this point. The drift speeds may differ for various species depending on their charge states, masses, or temperatures, possibly resulting in electric currents or chemical separation.

Contents

Gyration

If the magnetic field is uniform and all other forces are absent, then the Lorentz force will cause a particle to undergo a constant acceleration perpendicular to both the particle velocity and the magnetic field. This does not affect particle motion parallel to the magnetic field, but results in circular motion at constant speed in the plane perpendicular to the magnetic field. This circular motion is known as the gyromotion. For a particle with mass and charge moving in a magnetic field with strength , it has a frequency, called the gyrofrequency or cyclotron frequency, of

For a speed perpendicular to the magnetic field of , the radius of the orbit, called the gyroradius or Larmor radius, is

Parallel motion

Since the magnetic Lorentz force is always perpendicular to the magnetic field, it has no influence (to lowest order) on the parallel motion. In a uniform field with no additional forces, a charged particle will gyrate around the magnetic field according to the perpendicular component of its velocity and drift parallel to the field according to its initial parallel velocity, resulting in a helical orbit. If there is a force with a parallel component, the particle and its guiding center will be correspondingly accelerated.

If the field has a parallel gradient, a particle with a finite Larmor radius will also experience a force in the direction away from the larger magnetic field. This effect is known as the magnetic mirror. While it is closely related to guiding center drifts in its physics and mathematics, it is nevertheless considered to be distinct from them.

General force drifts

Generally speaking, when there is a force on the particles perpendicular to the magnetic field, then they drift in a direction perpendicular to both the force and the field. If is the force on one particle, then the drift velocity is

These drifts, in contrast to the mirror effect and the non-uniform B drifts, do not depend on finite Larmor radius, but are also present in cold plasmas. This may seem counterintuitive. If a particle is stationary when a force is turned on, where does the motion perpendicular to the force come from and why doesn't the force produce a motion parallel to itself? The answer is the interaction with the magnetic field. The force initially results in an acceleration parallel to itself, but the magnetic field deflects the resulting motion in the drift direction. Once the particle is moving in the drift direction, the magnetic field deflects it back against the external force, so that the average acceleration in the direction of the force is zero. There is, however, a one-time displacement in the direction of the force equal to (f/m)ωc−2, which should be considered a consequence of the polarization drift (see below) while the force is being turned on. The resulting motion is a cycloid. More generally, the superposition of a gyration and a uniform perpendicular drift is a trochoid.

All drifts may be considered special cases of the force drift, although this is not always the most useful way to think about them. The obvious cases are electric and gravitational forces. The grad-B drift can be considered to result from the force on a magnetic dipole in a field gradient. The curvature, inertia, and polarisation drifts result from treating the acceleration of the particle as fictitious forces. The diamagnetic drift can be derived from the force due to a pressure gradient. Finally, other forces such as radiation pressure and collisions also result in drifts.

Gravitational field

A simple example of a force drift is a plasma in a gravitational field, e.g. the ionosphere. The drift velocity is

Because of the mass dependence, the gravitational drift for the electrons can normally be ignored.

The dependence on the charge of the particle implies that the drift direction is opposite for ions as for electrons, resulting in a current. In a fluid picture, it is this current crossed with the magnetic field that provides that force counteracting the applied force.

Electric field

This drift, often called the (E-cross-B) drift, is a special case because the electric force on a particle depends on its charge (as opposed, for example, to the gravitational force considered above). As a result, ions (of whatever mass and charge) and electrons both move in the same direction at the same speed, so there is no net current (assuming quasineutrality of the plasma). In the context of special relativity, in the frame moving with this velocity, the electric field vanishes. The value of the drift velocity is given by

Nonuniform E

If the electric field is not uniform, the above formula is modified to read [1]

Nonuniform B

Guiding center drifts may also result not only from external forces but also from non-uniformities in the magnetic field. It is convenient to express these drifts in terms of the parallel and perpendicular kinetic energies

In that case, the explicit mass dependence is eliminated. If the ions and electrons have similar temperatures, then they also have similar, though oppositely directed, drift velocities.

Grad-B drift

When a particle moves into a larger magnetic field, the curvature of its orbit becomes tighter, transforming the otherwise circular orbit into a cycloid. The drift velocity is

Curvature drift

In order for a charged particle to follow a curved field line, it needs a drift velocity out of the plane of curvature to provide the necessary centripetal force. This velocity is where is the radius of curvature pointing outwards, away from the center of the circular arc which best approximates the curve at that point. where is the unit vector in the direction of the magnetic field. This drift can be decomposed into the sum of the curvature drift and the term

In the important limit of stationary magnetic field and weak electric field, the inertial drift is dominated by the curvature drift term.

Curved vacuum drift

In the limit of small plasma pressure, Maxwell's equations provide a relationship between gradient and curvature that allows the corresponding drifts to be combined as follows

For a species in thermal equilibrium, can be replaced by ( for and for ).

The expression for the grad-B drift above can be rewritten for the case when is due to the curvature. This is most easily done by realizing that in a vacuum, Ampere's Law is . In cylindrical coordinates chosen such that the azimuthal direction is parallel to the magnetic field and the radial direction is parallel to the gradient of the field, this becomes

Since is a constant, this implies that and the grad-B drift velocity can be written

Polarization drift

A time-varying electric field also results in a drift given by

Obviously this drift is different from the others in that it cannot continue indefinitely. Normally an oscillatory electric field results in a polarization drift oscillating 90 degrees out of phase. Because of the mass dependence, this effect is also called the inertia drift. Normally the polarization drift can be neglected for electrons because of their relatively small mass.

Diamagnetic drift

The diamagnetic drift is not actually a guiding center drift and resembles averaged (fluid) behavior of large collection of particles. A pressure gradient does not cause any single particle to drift. Nevertheless, the fluid velocity is defined by counting the particles moving through a reference area, and a pressure gradient results in more particles in one direction than in the other. The net velocity of the fluid is given by

Drift Currents

With the important exception of the drift, the drift velocities of differently charged particles will be different. This difference in velocities results in a current, while the mass dependence of the drift velocity can result in chemical separation.

Related Research Articles

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.

<span class="mw-page-title-main">Magnetic field</span> Distribution of magnetic force

A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

In physics, angular acceleration is the time rate of change of angular velocity. Following the two types of angular velocity, spin angular velocity and orbital angular velocity, the respective types of angular acceleration are: spin angular acceleration, involving a rigid body about an axis of rotation intersecting the body's centroid; and orbital angular acceleration, involving a point particle and an external axis.

<span class="mw-page-title-main">Biot–Savart law</span> Important law of classical magnetism

In physics, specifically electromagnetism, the Biot–Savart law is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.

<span class="mw-page-title-main">Thomas precession</span> Relativistic correction

In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.

In plasma physics, the Vlasov equation is a differential equation describing time evolution of the distribution function of collisionless plasma consisting of charged particles with long-range interaction, such as the Coulomb interaction. The equation was first suggested for the description of plasma by Anatoly Vlasov in 1938 and later discussed by him in detail in a monograph. The Vlasov equation, combined with Landau kinetic equation describe collisional plasma.

The diffusion of plasma across a magnetic field was conjectured to follow the Bohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and inversely linear with the strength of the confining magnetic field.

<span class="mw-page-title-main">Larmor formula</span> Gives the total power radiated by an accelerating, nonrelativistic point charge

In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light.

Radiation damping in accelerator physics is a phenomenum where betatron oscillations and longitudinal oscilations of the particle are damped due to energy loss by synchrotron radiation. It can be used to reduce the beam emittance of a high-velocity charged particle beam.

<span class="mw-page-title-main">Magnetosphere particle motion</span>

The ions and electrons of a plasma interacting with the Earth's magnetic field generally follow its magnetic field lines. These represent the force that a north magnetic pole would experience at any given point. Plasmas exhibit more complex second-order behaviors, studied as part of magnetohydrodynamics.

<span class="mw-page-title-main">Magnetic tension</span> Restoring force on bent magnetic field lines

In physics, magnetic tension is a restoring force with units of force density that acts to straighten bent magnetic field lines. In SI units, the force density exerted perpendicular to a magnetic field can be expressed as

The gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field. In SI units, the non-relativistic gyroradius is given by where is the mass of the particle, is the component of the velocity perpendicular to the direction of the magnetic field, is the electric charge of the particle, and is the magnetic field flux density.

<span class="mw-page-title-main">Moving magnet and conductor problem</span> Thought experiment in physics

The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v, with respect to a magnet is calculated in the frame of reference of the magnet and in the frame of reference of the conductor. The observable quantity in the experiment, the current, is the same in either case, in accordance with the basic principle of relativity, which states: "Only relative motion is observable; there is no absolute standard of rest". However, according to Maxwell's equations, the charges in the conductor experience a magnetic force in the frame of the magnet and an electric force in the frame of the conductor. The same phenomenon would seem to have two different descriptions depending on the frame of reference of the observer.

In plasma physics, the Hasegawa–Mima equation, named after Akira Hasegawa and Kunioki Mima, is an equation that describes a certain regime of plasma, where the time scales are very fast, and the distance scale in the direction of the magnetic field is long. In particular the equation is useful for describing turbulence in some tokamaks. The equation was introduced in Hasegawa and Mima's paper submitted in 1977 to Physics of Fluids, where they compared it to the results of the ATC tokamak.

Gyrokinetics is a theoretical framework to study plasma behavior on perpendicular spatial scales comparable to the gyroradius and frequencies much lower than the particle cyclotron frequencies. These particular scales have been experimentally shown to be appropriate for modeling plasma turbulence. The trajectory of charged particles in a magnetic field is a helix that winds around the field line. This trajectory can be decomposed into a relatively slow motion of the guiding center along the field line and a fast circular motion, called gyromotion. For most plasma behavior, this gyromotion is irrelevant. Averaging over this gyromotion reduces the equations to six dimensions rather than the seven. Because of this simplification, gyrokinetics governs the evolution of charged rings with a guiding center position, instead of gyrating charged particles.

The convection–diffusion equation is a parabolic partial differential equation that combines the diffusion and convection (advection) equations. It describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

In plasma physics and magnetic confinement fusion, neoclassical transport or neoclassical diffusion is a theoretical description of collisional transport in toroidal plasmas, usually found in tokamaks or stellarators. It is a modification of classical diffusion adding in effects of non-uniform magnetic fields due to the toroidal geometry, which give rise to new diffusion effects.

In plasma physics, a drift wave is a type of collective excitation that is driven by a pressure gradient within a magnetised plasma, which can be destabilised by differences between ion and electron motion. The drift wave typically propagates across the pressure gradient and is perpendicular to the magnetic field. It can occur in relatively simple configurations such as in a column of plasma with a non-uniform density but a straight magnetic field. Drift wave turbulence is responsible for the transport of particles, energy and momentum across magnetic field lines.

Atmospheric circulation of a planet is largely specific to the planet in question and the study of atmospheric circulation of exoplanets is a nascent field as direct observations of exoplanet atmospheres are still quite sparse. However, by considering the fundamental principles of fluid dynamics and imposing various limiting assumptions, a theoretical understanding of atmospheric motions can be developed. This theoretical framework can also be applied to planets within the Solar System and compared against direct observations of these planets, which have been studied more extensively than exoplanets, to validate the theory and understand its limitations as well.

References

  1. Baumjohann, Wolfgang; Treumann, Rudolf (1997). Basic Space Plasma Physics. World Scientific. ISBN   978-1-86094-079-8.