Cycloid

Last updated
A cycloid generated by a rolling circle Cycloid f.gif
A cycloid generated by a rolling circle

In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve.

Contents

The cycloid, with the cusps pointing upward, is the curve of fastest descent under uniform gravity (the brachistochrone curve). It is also the form of a curve for which the period of an object in simple harmonic motion (rolling up and down repetitively) along the curve does not depend on the object's starting position (the tautochrone curve). In physics, when a charged particle at rest is put under a uniform electric and magnetic field perpendicular to one another, the particle’s trajectory draws out a cycloid.

History

It was in the left hand try-pot of the Pequod, with the soapstone diligently circling round me, that I was first indirectly struck by the remarkable fact, that in geometry all bodies gliding along the cycloid, my soapstone for example, will descend from any point in precisely the same time.

Moby Dick by Herman Melville, 1851

The cycloid has been called "The Helen of Geometers" as, like Helen of Troy, it caused frequent quarrels among 17th-century mathematicians, while Sarah Hart sees it named as such "because the properties of this curve are so beautiful". [1] [2]

Historians of mathematics have proposed several candidates for the discoverer of the cycloid. Mathematical historian Paul Tannery speculated that such a simple curve must have been known to the ancients, citing similar work by Carpus of Antioch described by Iamblichus. [3] English mathematician John Wallis writing in 1679 attributed the discovery to Nicholas of Cusa, [4] but subsequent scholarship indicates that either Wallis was mistaken or the evidence he used is now lost. [5] Galileo Galilei's name was put forward at the end of the 19th century [6] and at least one author reports credit being given to Marin Mersenne. [7] Beginning with the work of Moritz Cantor [8] and Siegmund Günther, [9] scholars now assign priority to French mathematician Charles de Bovelles [10] [11] [12] based on his description of the cycloid in his Introductio in geometriam, published in 1503. [13] In this work, Bovelles mistakes the arch traced by a rolling wheel as part of a larger circle with a radius 120% larger than the smaller wheel. [5]

Galileo originated the term cycloid and was the first to make a serious study of the curve. [5] According to his student Evangelista Torricelli, [14] in 1599 Galileo attempted the quadrature of the cycloid (determining the area under the cycloid) with an unusually empirical approach that involved tracing both the generating circle and the resulting cycloid on sheet metal, cutting them out and weighing them. He discovered the ratio was roughly 3:1, which is the true value, but he incorrectly concluded the ratio was an irrational fraction, which would have made quadrature impossible. [7] Around 1628, Gilles Persone de Roberval likely learned of the quadrature problem from Père Marin Mersenne and effected the quadrature in 1634 by using Cavalieri's Theorem. [5] However, this work was not published until 1693 (in his Traité des Indivisibles). [15]

Constructing the tangent of the cycloid dates to August 1638 when Mersenne received unique methods from Roberval, Pierre de Fermat and René Descartes. Mersenne passed these results along to Galileo, who gave them to his students Torricelli and Viviani, who were able to produce a quadrature. This result and others were published by Torricelli in 1644, [14] which is also the first printed work on the cycloid. This led to Roberval charging Torricelli with plagiarism, with the controversy cut short by Torricelli's early death in 1647. [15]

In 1658, Blaise Pascal had given up mathematics for theology but, while suffering from a toothache, began considering several problems concerning the cycloid. His toothache disappeared, and he took this as a heavenly sign to proceed with his research. Eight days later he had completed his essay and, to publicize the results, proposed a contest. Pascal proposed three questions relating to the center of gravity, area and volume of the cycloid, with the winner or winners to receive prizes of 20 and 40 Spanish doubloons. Pascal, Roberval and Senator Carcavy were the judges, and neither of the two submissions (by John Wallis and Antoine de Lalouvère) was judged to be adequate. [16] :198 While the contest was ongoing, Christopher Wren sent Pascal a proposal for a proof of the rectification of the cycloid; Roberval claimed promptly that he had known of the proof for years. Wallis published Wren's proof (crediting Wren) in Wallis's Tractatus Duo, giving Wren priority for the first published proof. [15]

Fifteen years later, Christiaan Huygens had deployed the cycloidal pendulum to improve chronometers and had discovered that a particle would traverse a segment of an inverted cycloidal arch in the same amount of time, regardless of its starting point. In 1686, Gottfried Wilhelm Leibniz used analytic geometry to describe the curve with a single equation. In 1696, Johann Bernoulli posed the brachistochrone problem, the solution of which is a cycloid. [15]

Equations

The cycloid through the origin, generated by a circle of radius r rolling over the x-axis on the positive side (y ≥ 0), consists of the points (x, y), with

where t is a real parameter corresponding to the angle through which the rolling circle has rotated. For given t, the circle's centre lies at (x, y) = (rt, r).

The Cartesian equation is obtained by solving the y-equation for t and substituting into the x-equation:

or, eliminating the multiple-valued inverse cosine:

When y is viewed as a function of x, the cycloid is differentiable everywhere except at the cusps on the x-axis, with the derivative tending toward or near a cusp. The map from t to (x, y) is differentiable, in fact of class C, with derivative 0 at the cusps.

The slope of the tangent to the cycloid at the point is given by .

A cycloid segment from one cusp to the next is called an arch of the cycloid, for example the points with and .

Considering the cycloid as the graph of a function , it satisfies the differential equation: [17]

Involute

Generation of the involute of the cycloid unwrapping a tense wire placed on half cycloid arc (red marked) Evolute generation.png
Generation of the involute of the cycloid unwrapping a tense wire placed on half cycloid arc (red marked)

The involute of the cycloid has exactly the same shape as the cycloid it originates from. This can be visualized as the path traced by the tip of a wire initially lying on a half arch of the cycloid: as it unrolls while remaining tangent to the original cycloid, it describes a new cycloid (see also cycloidal pendulum and arc length).

Demonstration

Demonstration of the properties of the involute of a cycloid Evolute demo.png
Demonstration of the properties of the involute of a cycloid

This demonstration uses the rolling-wheel definition of cycloid, as well as the instantaneous velocity vector of a moving point, tangent to its trajectory. In the adjacent picture, and are two points belonging to two rolling circles, with the base of the first just above the top of the second. Initially, and coincide at the intersection point of the two circles. When the circles roll horizontally with the same speed, and traverse two cycloid curves. Considering the red line connecting and at a given time, one proves the line is alwaystangent to the lower arc at and orthogonal to the upper arc at . Let be the point in common between the upper and lower circles at the given time. Then:

Area

Using the above parameterization , the area under one arch, is given by:

This is three times the area of the rolling circle.

Arc length

The length of the cycloid as consequence of the property of its involute Cycloid length.png
The length of the cycloid as consequence of the property of its involute

The arc length S of one arch is given by

Another geometric way to calculate the length of the cycloid is to notice that when a wire describing an involute has been completely unwrapped from half an arch, it extends itself along two diameters, a length of 4r. This is thus equal to half the length of arch, and that of a complete arch is 8r.

Cycloidal pendulum

Schematic of a cycloidal pendulum. CyloidPendulum.png
Schematic of a cycloidal pendulum.

If a simple pendulum is suspended from the cusp of an inverted cycloid, such that the string is constrained to be tangent to one of its arches, and the pendulum's length L is equal to that of half the arc length of the cycloid (i.e., twice the diameter of the generating circle, L = 4r), the bob of the pendulum also traces a cycloid path. Such a pendulum is isochronous, with equal-time swings regardless of amplitude. Introducing a coordinate system centred in the position of the cusp, the equation of motion is given by:

where is the angle that the straight part of the string makes with the vertical axis, and is given by

where A < 1 is the "amplitude", is the radian frequency of the pendulum and g the gravitational acceleration.

Five isochronous cycloidal pendula with different amplitudes. Isochronous cycloidal pendula.gif
Five isochronous cycloidal pendula with different amplitudes.

The 17th-century Dutch mathematician Christiaan Huygens discovered and proved these properties of the cycloid while searching for more accurate pendulum clock designs to be used in navigation. [18]

Several curves are related to the cycloid.

All these curves are roulettes with a circle rolled along another curve of uniform curvature. The cycloid, epicycloids, and hypocycloids have the property that each is similar to its evolute. If q is the product of that curvature with the circle's radius, signed positive for epi- and negative for hypo-, then the similitude ratio of curve to evolute is 1 + 2q.

The classic Spirograph toy traces out hypotrochoid and epitrochoid curves.

Other uses

Cycloidal arches at the Kimbell Art Museum Kimbell Art Museum.jpg
Cycloidal arches at the Kimbell Art Museum

The cycloidal arch was used by architect Louis Kahn in his design for the Kimbell Art Museum in Fort Worth, Texas. It was also used by Wallace K. Harrison in the design of the Hopkins Center at Dartmouth College in Hanover, New Hampshire. [19]

Early research indicated that some transverse arching curves of the plates of golden age violins are closely modeled by curtate cycloid curves. [20] Later work indicates that curtate cycloids do not serve as general models for these curves, [21] which vary considerably.


See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius.

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.

<span class="mw-page-title-main">Tautochrone curve</span> Concept in geometry

A tautochrone curve or isochrone curve is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time is equal to π times the square root of the radius over the acceleration of gravity. The tautochrone curve is related to the brachistochrone curve, which is also a cycloid.

<span class="mw-page-title-main">Lemniscate of Bernoulli</span> Plane algebraic curve

In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F1 and F2, known as foci, at distance 2c from each other as the locus of points P so that PF1·PF2 = c2. The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from lemniscatus, which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4.

<span class="mw-page-title-main">Cardioid</span> Type of plane curve

In geometry, a cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion. A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.

<span class="mw-page-title-main">Epicycloid</span> Plane curve traced by a point on a circle rolled around another circle

In geometry, an epicycloid is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle. It is a particular kind of roulette.

<span class="mw-page-title-main">Deltoid curve</span> Roulette curve made from circles with radii that differ by factors of 3 or 1.5

In geometry, a deltoid curve, also known as a tricuspoid curve or Steiner curve, is a hypocycloid of three cusps. In other words, it is the roulette created by a point on the circumference of a circle as it rolls without slipping along the inside of a circle with three or one-and-a-half times its radius. It is named after the capital Greek letter delta (Δ) which it resembles.

<span class="mw-page-title-main">Involute</span> Curve traced by a string as it is unwrapped from another curve

In mathematics, an involute is a particular type of curve that is dependent on another shape or curve. An involute of a curve is the locus of a point on a piece of taut string as the string is either unwrapped from or wrapped around the curve.

<span class="mw-page-title-main">Evolute</span> Centers of curvature of a curve

In the differential geometry of curves, the evolute of a curve is the locus of all its centers of curvature. That is to say that when the center of curvature of each point on a curve is drawn, the resultant shape will be the evolute of that curve. The evolute of a circle is therefore a single point at its center. Equivalently, an evolute is the envelope of the normals to a curve.

<span class="mw-page-title-main">Nephroid</span> Plane curve; an epicycloid with radii differing by 1/2

In geometry, a nephroid is a specific plane curve. It is a type of epicycloid in which the smaller circle's radius differs from the larger one by a factor of one-half.

<span class="mw-page-title-main">Pedal curve</span> Curve generated by the projections of a fixed point on the tangents of another curve

In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal pointP, the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X. Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T – the pedal curve is the set of such points X, called the foot of the perpendicular to the tangent T from the fixed point P, as the variable point R ranges over the curve C.

<span class="mw-page-title-main">Cissoid</span> Plane curve constructed from two other curves and a fixed point

In geometry, a cissoid ( is a plane curve generated from two given curves C1, C2 and a point O. Let L be a variable line passing through O and intersecting C1 at P1 and C2 at P2. Let P be the point on L so that Then the locus of such points P is defined to be the cissoid of the curves C1, C2 relative to O.

<span class="mw-page-title-main">Power of a point</span> Relative distance of a point from a circle

In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826.

<span class="mw-page-title-main">Strophoid</span> Geometric curve constructed from another curve and two points

In geometry, a strophoid is a curve generated from a given curve C and points A and O as follows: Let L be a variable line passing through O and intersecting C at K. Now let P1 and P2 be the two points on L whose distance from K is the same as the distance from A to K. The locus of such points P1 and P2 is then the strophoid of C with respect to the pole O and fixed point A. Note that AP1 and AP2 are at right angles in this construction.

There are several equivalent ways for defining trigonometric functions, and the proof of the trigonometric identities between them depend on the chosen definition. The oldest and somehow the most elementary definition is based on the geometry of right triangles. The proofs given in this article use this definition, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

The goat grazing problem is either of two related problems in recreational mathematics involving a tethered goat grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing an exterior of a circular area. For the exterior problem, the constraint that the rope can not enter the circular area dictates that the grazing area forms an involute. If the goat were instead tethered to a post on the edge of a circular path of pavement that did not obstruct the goat, the interior and exterior problem would be complements of a simple circular area.

<span class="mw-page-title-main">Limaçon trisectrix</span> Quartic plane curve

In geometry, a limaçon trisectrix is the name for the quartic plane curve that is a trisectrix that is specified as a limaçon. The shape of the limaçon trisectrix can be specified by other curves particularly as a rose, conchoid or epitrochoid. The curve is one among a number of plane curve trisectrixes that includes the Conchoid of Nicomedes, the Cycloid of Ceva, Quadratrix of Hippias, Trisectrix of Maclaurin, and Tschirnhausen cubic. The limaçon trisectrix a special case of a sectrix of Maclaurin.

References

  1. Cajori, Florian (1999). A History of Mathematics. New York: Chelsea. p. 177. ISBN   978-0-8218-2102-2.
  2. Hart, Sarah (7 April 2023). "The Wondrous Connections Between Mathematics and Literature". New York Times. Retrieved 7 April 2023.
  3. Tannery, Paul (1883), "Pour l'histoire des lignes et surfaces courbes dans l'antiquité", Mélanges, Bulletin des sciences mathématiques et astronomiques, Ser. 2, 7: 278–291, p. 284: Avant de quitter la citation de Jamblique, j'ajouterai que, dans la courbe de double mouvement de Carpos, il est difficile de ne pas reconnaître la cycloïde dont la génération si simple n'a pas dû échapper aux anciens.[Before leaving the citation of Iamblichus, I will add that, in the curve of double movement of Carpus, it is difficult not to recognize the cycloid, whose so-simple generation couldn't have escaped the ancients.] (cited in Whitman 1943);
  4. Wallis, D. (1695). "An Extract of a Letter from Dr. Wallis, of May 4. 1697, Concerning the Cycloeid Known to Cardinal Cusanus, about the Year 1450; and to Carolus Bovillus about the Year 1500". Philosophical Transactions of the Royal Society of London. 19 (215–235): 561–566. doi: 10.1098/rstl.1695.0098 . (Cited in Günther, p. 5)
  5. 1 2 3 4 Whitman, E. A. (May 1943), "Some historical notes on the cycloid", The American Mathematical Monthly, 50 (5): 309–315, doi:10.2307/2302830, JSTOR   2302830 (subscription required)
  6. Cajori, Florian (1999), A History of Mathematics (5th ed.), p. 162, ISBN   0-8218-2102-4 (Note: The first (1893) edition and its reprints state that Galileo invented the cycloid. According to Phillips, this was corrected in the second (1919) edition and has remained through the most recent (fifth) edition.)
  7. 1 2 Roidt, Tom (2011). Cycloids and Paths (PDF) (MS). Portland State University. p. 4. Archived (PDF) from the original on 2022-10-09.
  8. Cantor, Moritz (1892), Vorlesungen über Geschichte der Mathematik, Bd. 2, Leipzig: B. G. Teubner, OCLC   25376971
  9. Günther, Siegmund (1876), Vermischte untersuchungen zur geschichte der mathematischen wissenschaften, Leipzig: Druck und Verlag Von B. G. Teubner, p. 352, OCLC   2060559
  10. Phillips, J. P. (May 1967), "Brachistochrone, Tautochrone, CycloidApple of Discord", The Mathematics Teacher, 60 (5): 506–508, doi:10.5951/MT.60.5.0506, JSTOR   27957609 (subscription required)
  11. Victor, Joseph M. (1978), Charles de Bovelles, 1479-1553: An Intellectual Biography, p. 42, ISBN   978-2-600-03073-1
  12. Martin, J. (2010). "The Helen of Geometry". The College Mathematics Journal. 41: 17–28. doi:10.4169/074683410X475083. S2CID   55099463.
  13. de Bouelles, Charles (1503), Introductio in geometriam ... Liber de quadratura circuli. Liber de cubicatione sphere. Perspectiva introductio., OCLC   660960655
  14. 1 2 Torricelli, Evangelista (1644), Opera geometrica, OCLC   55541940
  15. 1 2 3 4 Walker, Evelyn (1932), A Study of Roberval's Traité des Indivisibles, Columbia University (cited in Whitman 1943);
  16. Conner, James A. (2006), Pascal's Wager: The Man Who Played Dice with God (1st ed.), HarperCollins, pp.  224, ISBN   9780060766917
  17. Roberts, Charles (2018). Elementary Differential Equations: Applications, Models, and Computing (2nd illustrated ed.). CRC Press. p. 141. ISBN   978-1-4987-7609-7. Extract of page 141, equation (f) with their K=2r
  18. C. Huygens, "The Pendulum Clock or Geometrical Demonstrations Concerning the Motion of Pendula (sic) as Applied to Clocks," Translated by R. J. Blackwell, Iowa State University Press (Ames, Iowa, USA, 1986).
  19. 101 Reasons to Love Dartmouth, Dartmouth Alumni Magazine, 2016
  20. Playfair, Q. "Curtate Cycloid Arching in Golden Age Cremonese Violin Family Instruments". Catgut Acoustical Society Journal. II. 4 (7): 48–58.
  21. Mottola, RM (2011). "Comparison of Arching Profiles of Golden Age Cremonese Violins and Some Mathematically Generated Curves". Savart Journal. 1 (1). Archived from the original on 2017-12-11. Retrieved 2012-08-13.

Further reading