Author | Edward Kasner, James R. Newman |
---|---|
Illustrator | Rufus Isaacs |
Country | United States |
Language | English |
Subject | Mathematics |
Publisher | Simon & Schuster |
Publication date | 1940 |
Media type | |
Pages | 380 pp. |
ISBN | 978-0671208547 |
Mathematics and the Imagination is a book published in New York by Simon & Schuster in 1940. The authors are Edward Kasner and James R. Newman. The illustrator Rufus Isaacs provided 169 figures. It rapidly became a best-seller and received several glowing reviews. Special publicity has been awarded it since it introduced the term googol for 10100, and googolplex for 10googol. The book includes nine chapters, an annotated bibliography of 45 titles, and an index in its 380 pages.
According to I. Bernard Cohen, "it is the best account of modern mathematics that we have", and is "written in a graceful style, combining clarity of exposition with good humor". According to T. A. Ryan's review, the book "is not as superficial as one might expect a book at the popular level to be. For instance, the description of the invention of the term googol ... is a very serious attempt to show how misused is the term infinite when applied to large and finite numbers." By 1941 G. Waldo Dunnington could note the book had become a best-seller. "Apparently it has succeeded in communicating to the layman something of the pleasure experienced by the creative mathematician in difficult problem solving."
The introduction notes (p xiii) "Science, particularly mathematics, ... appears to be building the one permanent and stable edifice in an age where all others are either crumbling or being blown to bits." The authors affirm (p xiv) "It has been our aim, ... to show by its very diversity something of the character of mathematics, of its bold, untrammelled spirit, of how, both as an art and science, it has continued to lead the creative faculties beyond even imagination and intuition."
In chapter one, "New names for old", they explain why mathematics is the science that uses easy words for hard ideas. They note (p 5) "many amusing ambiguities arise. For instance, the word function probably expresses the most important idea in the whole history of mathematics. Also, the theory of rings is much more recent than the theory of groups. It is found in most of the new books on algebra, and has nothing to do with either matrimony or bells. Page 7 introduces the Jordan curve theorem. In discussing the Problem of Apollonius, they mention that Edmond Laguerre's solution considered circles with orientation.(p 13) In presenting radicals, they say "The symbol for radical is not the hammer and sickle, but a sign three or four centuries old, and the idea of a mathematical radical is even older than that." (p 16) "Ruffini and Abel showed that equations of the fifth degree could not be solved by radicals." (p 17) (Abel–Ruffini theorem)
Chapter 2 "Beyond Googol" treats infinite sets. The distinction is made between a countable set and an uncountable set. Further, the characteristic property of infinite sets is given: an infinite class may be in 1:1 correspondence with a proper subset (p 57), so that "an infinite class is no greater than some of its parts" (p 43). In addition to introducing Aleph numbers the authors cite Lewis Carrol's The Hunting of the Snark , where instructions are given to avoid boojums when snark hunting. They say "The infinite may be boojum too." (p 61)
Chapter 3 is "Pie (π, i, e) Transcendental and Imaginary". To motivate e (mathematical constant), they discuss first compound interest and then continuous compounding. "No other mathematical constant, not even π, is more closely connected with human affairs" (p 86). "[e] has played an integral part in helping mathematicians describe and predict what is for man the most important of all natural phenomena – that of growth." The exponential function, y = ex ... "is the only function of x with the rate of change with respect to x equal to the function itself." (p 87) The authors define the Gauss plane and describe the action of multiplication by i as rotation through 90°. They address Euler's identity, i.e. the expression eπ i + 1 = 0, indicating that the venerable Benjamin Peirce called it "absolutely paradoxical". A note of idealism is then expressed: "When there is so much humility and so much vision everywhere, society will be governed by science and not its clever people." (pp 103,4)
Chapter 4 is "Assorted Geometries, Plane and Fancy". Both Non-Euclidean geometry and four-dimensional space are discussed. The authors say (p 112) "Among our most cherished convictions, none is more precious than our beliefs about space and time, yet is more difficult to explain."
In the final pages the authors approach the question, "What is mathematics?" They say it is a "sad fact that it is easier to be clever than clear." The answer is not as easy as defining biology. "[I]n mathematics we have a universal language, valid, useful, intelligible everywhere in place and time ..." Finally, "Austere and imperious as logic, it is still sufficiently sensitive and flexible to meet each new need. Yet this vast edifice rests on the simplest and most primitive foundations, is wrought by imagination and logic out of a handful of childish rules." (p 358)
Johann Carl Friedrich Gauss was a German mathematician, geodesist, and physicist who made significant contributions to many fields in mathematics and science. Gauss ranks among history's most influential mathematicians and has been referred to as the "Prince of Mathematicians".
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.
Niels Henrik Abel was a Norwegian mathematician who made pioneering contributions in a variety of fields. His most famous single result is the first complete proof demonstrating the impossibility of solving the general quintic equation in radicals. This question was one of the outstanding open problems of his day, and had been unresolved for over 250 years. He was also an innovator in the field of elliptic functions, discoverer of Abelian functions. He made his discoveries while living in poverty and died at the age of 26 from tuberculosis.
A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any non-negative integer using a combination of ten fundamental numeric symbols, called digits. In addition to their use in counting and measuring, numerals are often used for labels, for ordering, and for codes. In common usage, a numeral is not clearly distinguished from the number that it represents.
The number π is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159. The number π appears in many formulae across mathematics and physics. It is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an equation involving only finite sums, products, powers, and integers. The transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of π appear to be randomly distributed, but no proof of this conjecture has been found.
A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.
The Hunting of the Snark, subtitled An Agony, in Eight fits, is a poem by the English writer Lewis Carroll. It is typically categorised as a nonsense poem. Written between 1874 and 1876, it borrows the setting, some creatures, and eight portmanteau words from Carroll's earlier poem "Jabberwocky" in his children's novel Through the Looking-Glass (1871).
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.
In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and
In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry.
In the mathematical field of graph theory, a snark is an undirected graph with exactly three edges per vertex whose edges cannot be colored with only three colors. In order to avoid trivial cases, snarks are often restricted to have additional requirements on their connectivity and on the length of their cycles. Infinitely many snarks exist.
In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:
In mathematics, Viète's formula is the following infinite product of nested radicals representing twice the reciprocal of the mathematical constant π:
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics, important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, and Varāhamihira. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra. In addition, trigonometry was further advanced in India, and, in particular, the modern definitions of sine and cosine were developed there. These mathematical concepts were transmitted to the Middle East, China, and Europe and led to further developments that now form the foundations of many areas of mathematics.
A Course of Modern Analysis: an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions is a landmark textbook on mathematical analysis written by Edmund T. Whittaker and George N. Watson, first published by Cambridge University Press in 1902. The first edition was Whittaker's alone, but later editions were co-authored with Watson.
In mathematics, a proof of impossibility is a proof that demonstrates that a particular problem cannot be solved as described in the claim, or that a particular set of problems cannot be solved in general. Such a case is also known as a negative proof, proof of an impossibility theorem, or negative result. Proofs of impossibility often are the resolutions to decades or centuries of work attempting to find a solution, eventually proving that there is no solution. Proving that something is impossible is usually much harder than the opposite task, as it is often necessary to develop a proof that works in general, rather than to just show a particular example. Impossibility theorems are usually expressible as negative existential propositions or universal propositions in logic.
Yuktibhāṣā, also known as Gaṇita-yukti-bhāṣā and Gaṇitanyāyasaṅgraha, is a major treatise on mathematics and astronomy, written by the Indian astronomer Jyesthadeva of the Kerala school of mathematics around 1530. The treatise, written in Malayalam, is a consolidation of the discoveries by Madhava of Sangamagrama, Nilakantha Somayaji, Parameshvara, Jyeshtadeva, Achyuta Pisharati, and other astronomer-mathematicians of the Kerala school. It also exists in a Sanskrit version, with unclear author and date, composed as a rough translation of the Malayalam original.
Edward Kasner was an American mathematician who was appointed Tutor on Mathematics in the Columbia University Mathematics Department. Kasner was the first Jewish person appointed to a faculty position in the sciences at Columbia University. Subsequently, he became an adjunct professor in 1906, and a full professor in 1910, at the university. Differential geometry was his main field of study. In addition to introducing the term "googol", he is known also for the Kasner metric and the Kasner polygon.
This is a timeline of pure and applied mathematics history. It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic" stage, in which comprehensive notational systems for formulas are the norm.
James Laurie Snell was an American mathematician and educator.