Involute

Last updated
Two involutes (red) of a parabola Evolvente-parabel.svg
Two involutes (red) of a parabola

In mathematics, an involute (also known as an evolvent) is a particular type of curve that is dependent on another shape or curve. An involute of a curve is the locus of a point on a piece of taut string as the string is either unwrapped from or wrapped around the curve. [1]

Contents

The evolute of an involute is the original curve.

It is generalized by the roulette family of curves. That is, the involutes of a curve are the roulettes of the curve generated by a straight line.

The notions of the involute and evolute of a curve were introduced by Christiaan Huygens in his work titled Horologium oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geometricae (1673), where he showed that the involute of a cycloid is still a cycloid, thus providing a method for constructing the cycloidal pendulum, which has the useful property that its period is independent of the amplitude of oscillation. [2]

Involute of a parameterized curve

Let be a regular curve in the plane with its curvature nowhere 0 and , then the curve with the parametric representation

is an involute of the given curve.

Proof
The string acts as a tangent to the curve . Its length is changed by an amount equal to the arc length traversed as it winds or unwinds. Arc length of the curve traversed in the interval is given by

where is the starting point from where the arc length is measured. Since the tangent vector depicts the taut string here, we get the string vector as

The vector corresponding to the end point of the string () can be easily calculated using vector addition, and one gets

Adding an arbitrary but fixed number to the integral results in an involute corresponding to a string extended by (like a ball of wool yarn having some length of thread already hanging before it is unwound). Hence, the involute can be varied by constant and/or adding a number to the integral (see Involutes of a semicubic parabola).

If one gets

Properties of involutes

Involute: properties. The angles depicted are 90 degrees. Involute(in red) of parabola(dark blue).png
Involute: properties. The angles depicted are 90 degrees.

In order to derive properties of a regular curve it is advantageous to suppose the arc length to be the parameter of the given curve, which lead to the following simplifications: and , with the curvature and the unit normal. One gets for the involute:

and

and the statement:

and from follows:

The family of involutes and the family of tangents to the original curve makes up an orthogonal coordinate system. Consequently, one may construct involutes graphically. First, draw the family of tangent lines. Then, an involute can be constructed by always staying orthogonal to the tangent line passing the point.

Cusps

This section is based on. [3]

There are generically two types of cusps in involutes. The first type is at the point where the involute touches the curve itself. This is a cusp of order 3/2. The second type is at the point where the curve has an inflection point. This is a cusp of order 5/2.

This can be visually seen by constructing a map defined by where is the arclength parametrization of the curve, and is the slope-angle of the curve at the point . This maps the 2D plane into a surface in 3D space. For example, this maps the circle into the hyperboloid of one sheet.

By this map, the involutes are obtained in a three-step process: map to , then to the surface in , then project it down to by removing the z-axis: where is any real constant.

Since the mapping has nonzero derivative at all , cusps of the involute can only occur where the derivative of is vertical (parallel to the z-axis), which can only occur where the surface in has a vertical tangent plane.

Generically, the surface has vertical tangent planes at only two cases: where the surface touches the curve, and where the curve has an inflection point.

cusp of order 3/2

For the first type, one can start by the involute of a circle, with equationthen set , and expand for small , to obtainthus giving the order 3/2 curve , a semicubical parabola.

cusp of order 5/2

Tangents and involutes of the cubic curve
y
=
x
3
{\displaystyle y=x^{3}}
. The cusps of order 3/2 are on the cubic curve, while the cusps of order 5/2 are on the x-axis (the tangent line at the inflection point). Involutes of a cubic curve.svg
Tangents and involutes of the cubic curve . The cusps of order 3/2 are on the cubic curve, while the cusps of order 5/2 are on the x-axis (the tangent line at the inflection point).

For the second type, consider the curve . The arc from to is of length , and the tangent at has angle . Thus, the involute starting from at distance has parametric formulaExpand it up to order , we obtainwhich is a cusp of order 5/2. Explicitly, one may solve for the polynomial expansion satisfied by :or which clearly shows the cusp shape.

Setting , we obtain the involute passing the origin. It is special as it contains no cusp. By serial expansion, it has parametric equationor

Examples

Involutes of a circle

Involutes of a circle Evolvente-kreis.svg
Involutes of a circle

For a circle with parametric representation , one has . Hence , and the path length is .

Evaluating the above given equation of the involute, one gets

for the parametric equation of the involute of the circle.

The term is optional; it serves to set the start location of the curve on the circle. The figure shows involutes for (green), (red), (purple) and (light blue). The involutes look like Archimedean spirals, but they are actually not.

The arc length for and of the involute is

Involutes of a semicubic parabola (blue). Only the red curve is a parabola. Notice how the involutes and tangents make up an orthogonal coordinate system. This is a general fact. Evolvente-np.svg
Involutes of a semicubic parabola (blue). Only the red curve is a parabola. Notice how the involutes and tangents make up an orthogonal coordinate system. This is a general fact.

Involutes of a semicubic parabola

The parametric equation describes a semicubical parabola. From one gets and . Extending the string by extensively simplifies further calculation, and one gets

Eliminating t yields showing that this involute is a parabola.

The other involutes are thus parallel curves of a parabola, and are not parabolas, as they are curves of degree six (See Parallel curve § Further examples).

The red involute of a catenary (blue) is a tractrix. Involute.gif
The red involute of a catenary (blue) is a tractrix.

Involutes of a catenary

For the catenary , the tangent vector is , and, as its length is . Thus the arc length from the point (0, 1) is

Hence the involute starting from (0, 1) is parametrized by

and is thus a tractrix.

The other involutes are not tractrices, as they are parallel curves of a tractrix.

Involutes of a cycloid

Involutes of a cycloid (blue): Only the red curve is another cycloid Evolvente-zy.svg
Involutes of a cycloid (blue): Only the red curve is another cycloid

The parametric representation describes a cycloid. From , one gets (after having used some trigonometric formulas)

and

Hence the equations of the corresponding involute are

which describe the shifted red cycloid of the diagram. Hence

(Parallel curves of a cycloid are not cycloids.)

Involute and evolute

The evolute of a given curve consists of the curvature centers of . Between involutes and evolutes the following statement holds: [4] [5]

A curve is the evolute of any of its involutes.

Application

The most common profiles of modern gear teeth are involutes of a circle. In an involute gear system, the teeth of two meshing gears contact at a single instantaneous point that follows along a single straight line of action. The forces the contacting teeth exert on each other also follow this line and are normal to the teeth. The involute gear system maintaining these conditions follows the fundamental law of gearing: the ratio of angular velocities between the two gears must remain constant throughout.

With teeth of other shapes, the relative speeds and forces rise and fall as successive teeth engage, resulting in vibration, noise, and excessive wear. For this reason, nearly all modern planar gear systems are either involute or the related cycloidal gear system. [6]

Mechanism of a scroll compressor Two moving spirals scroll pump.gif
Mechanism of a scroll compressor

The involute of a circle is also an important shape in gas compressing, as a scroll compressor can be built based on this shape. Scroll compressors make less sound than conventional compressors and have proven to be quite efficient.

The High Flux Isotope Reactor uses involute-shaped fuel elements, since these allow a constant-width channel between them for coolant.

See also

Related Research Articles

<span class="mw-page-title-main">Catenary</span> Curve formed by a hanging chain

In physics and geometry, a catenary is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field.

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Cycloid</span> Curve traced by a point on a rolling circle

In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Tautochrone curve</span> Curve for which the time to roll to the end is equal for all starting points

A tautochrone curve or isochrone curve is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time is equal to π times the square root of the radius over the acceleration of gravity. The tautochrone curve is related to the brachistochrone curve, which is also a cycloid.

Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.

<span class="mw-page-title-main">Anti-de Sitter space</span> Maximally symmetric Lorentzian manifold with a negative cosmological constant

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Paul Dirac was the first person to rigorously explore anti-de Sitter space, doing so in 1963.

<span class="mw-page-title-main">Cardioid</span> Type of plane curve

In geometry, a cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion. A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered c. 1802 by Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

<span class="mw-page-title-main">Epicycloid</span> Plane curve traced by a point on a circle rolled around another circle

In geometry, an epicycloid is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle. It is a particular kind of roulette.

<span class="mw-page-title-main">Evolute</span> Centers of curvature of a curve

In the differential geometry of curves, the evolute of a curve is the locus of all its centers of curvature. That is to say that when the center of curvature of each point on a curve is drawn, the resultant shape will be the evolute of that curve. The evolute of a circle is therefore a single point at its center. Equivalently, an evolute is the envelope of the normals to a curve.

<span class="mw-page-title-main">Nephroid</span> Plane curve; an epicycloid with radii differing by 1/2

In geometry, a nephroid is a specific plane curve. It is a type of epicycloid in which the smaller circle's radius differs from the larger one by a factor of one-half.

<span class="mw-page-title-main">Pedal curve</span> Curve generated by the projections of a fixed point on the tangents of another curve

In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal pointP, the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X. Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T – the pedal curve is the set of such points X, called the foot of the perpendicular to the tangent T from the fixed point P, as the variable point R ranges over the curve C.

<span class="mw-page-title-main">Osculating circle</span> Circle of immediate corresponding curvature of a curve at a point

An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

<span class="mw-page-title-main">Whewell equation</span> Mathematical equation

The Whewell equation of a plane curve is an equation that relates the tangential angle with arc length, where the tangential angle is the angle between the tangent to the curve at some point and the x-axis, and the arc length is the distance along the curve from a fixed point. These quantities do not depend on the coordinate system used except for the choice of the direction of the x-axis, so this is an intrinsic equation of the curve, or, less precisely, the intrinsic equation. If one curve is obtained from another curve by translation then their Whewell equations will be the same.

<span class="mw-page-title-main">Exponential map (Lie theory)</span> Map from a Lie algebra to its Lie group

In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.

References

  1. Rutter, J.W. (2000). Geometry of Curves. CRC Press. pp.  204. ISBN   9781584881667.
  2. McCleary, John (2013). Geometry from a Differentiable Viewpoint . Cambridge University Press. pp.  89. ISBN   9780521116077.
  3. Arnolʹd, V. I. (1990). Huygens and Barrow, Newton and Hooke : pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals. Basel: Birkhaüser Verlag. ISBN   0-8176-2383-3. OCLC   21873606.
  4. K. Burg, H. Haf, F. Wille, A. Meister: Vektoranalysis: Höhere Mathematik für Ingenieure, Naturwissenschaftler und ..., Springer-Verlag, 2012, ISBN   3834883468, S. 30.
  5. R. Courant:Vorlesungen über Differential- und Integralrechnung, 1. Band, Springer-Verlag, 1955, S. 267.
  6. V. G. A. Goss (2013) "Application of analytical geometry to the shape of gear teeth", Resonance 18(9): 817 to 31 Springerlink (subscription required).