Pursuit curve

Last updated
A simple pursuit curve in which P is the pursuer and A is the pursuee Radiodrome-simple-y-bw.png
A simple pursuit curve in which P is the pursuer and A is the pursuee

In geometry, a curve of pursuit is a curve constructed by analogy to having a point or points representing pursuers and pursuees; the curve of pursuit is the curve traced by the pursuers.

Contents

With the paths of the pursuer and pursuee parameterized in time, the pursuee is always on the pursuer's tangent. That is, given F(t), the pursuer (follower), and L(t), the pursued (leader), for every t with F′(t) ≠ 0 there is an x such that

History

Pierre Bouguer's 1732 article studying pursuit curves BourguerCourbepoursuite1732.jpg
Pierre Bouguer's 1732 article studying pursuit curves

The pursuit curve was first studied by Pierre Bouguer in 1732. In an article on navigation, Bouguer defined a curve of pursuit to explore the way in which one ship might maneuver while pursuing another. [1]

Leonardo da Vinci has occasionally been credited with first exploring curves of pursuit. However Paul J. Nahin, having traced such accounts as far back as the late 19th century, indicates that these anecdotes are unfounded. [2]

Single pursuer

Curves of pursuit with different parameters Radiodrome-params-colour.png
Curves of pursuit with different parameters

The path followed by a single pursuer, following a pursuee that moves at constant speed on a line, is a radiodrome.

It is a solution of the differential equation 1+y′2 = k2 (ax)2y′′2.

Multiple pursuers

Curve of pursuit of vertices of a square (the mice problem for n=4). Four point pursuit curve.gif
Curve of pursuit of vertices of a square (the mice problem for n=4).

Typical drawings of curves of pursuit have each point acting as both pursuer and pursuee, inside a polygon, and having each pursuer pursue the adjacent point on the polygon. An example of this is the mice problem.

See also

Related Research Articles

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.

<span class="mw-page-title-main">Cycloid</span> Curve traced by a point on a rolling circle

In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve.

<span class="mw-page-title-main">Winding number</span> Number of times a curve wraps around a point in the plane

In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that the curve travels counterclockwise around the point, i.e., the curve's number of turns. For certain open plane curves, the number of turns may be a non-integer. The winding number depends on the orientation of the curve, and it is negative if the curve travels around the point clockwise.

<span class="mw-page-title-main">Curve</span> Mathematical idealization of the trace left by a moving point

In mathematics, a curve is an object similar to a line, but that does not have to be straight.

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

<span class="mw-page-title-main">Brachistochrone curve</span> Fastest curve descent without friction

In physics and mathematics, a brachistochrone curve, or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides frictionlessly under the influence of a uniform gravitational field to a given end point in the shortest time. The problem was posed by Johann Bernoulli in 1696.

<span class="mw-page-title-main">Apollonius of Perga</span> Ancient Greek geometer and astronomer (c. 240–190 BC)

Apollonius of Perga was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. With his predecessors Euclid and Archimedes, Apollonius is generally considered among the greatest mathematicians of antiquity.

<span class="mw-page-title-main">Curve of constant width</span> Shape with width independent of orientation

In geometry, a curve of constant width is a simple closed curve in the plane whose width is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve.

<span class="mw-page-title-main">Problem of Apollonius</span> Geometry problem about finding touching circles

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga posed and solved this famous problem in his work Ἐπαφαί ; this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets.

The circles of Apollonius are any of several sets of circles associated with Apollonius of Perga, a renowned Greek geometer. Most of these circles are found in planar Euclidean geometry, but analogs have been defined on other surfaces; for example, counterparts on the surface of a sphere can be defined through stereographic projection.

Pursuit–evasion is a family of problems in mathematics and computer science in which one group attempts to track down members of another group in an environment. Early work on problems of this type modeled the environment geometrically. In 1976, Torrence Parsons introduced a formulation whereby movement is constrained by a graph. The geometric formulation is sometimes called continuous pursuit–evasion, and the graph formulation discrete pursuit–evasion. Current research is typically limited to one of these two formulations.

<span class="mw-page-title-main">Euclidean plane</span> Geometric model of the planar projection of the physical universe

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Pole and polar</span> Unique point and line of a conic section

In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section.

In mathematics, the Fréchet distance is a measure of similarity between curves that takes into account the location and ordering of the points along the curves. It is named after Maurice Fréchet.

<span class="mw-page-title-main">Radiodrome</span>

In geometry, a radiodrome is the pursuit curve followed by a point that is pursuing another linearly-moving point. The term is derived from the Latin word radius and the Greek word dromos, for there is a radial component in its kinematic analysis. The classic form of a radiodrome is known as the "dog curve"; this is the path a dog follows when it swims across a stream with a current after something it has spotted on the other side. Because the dog drifts with the current, it will have to change its heading; it will also have to swim further than if it had taken the optimal heading. This case was described by Pierre Bouguer in 1732.

<span class="mw-page-title-main">Geodesics on an ellipsoid</span> Shortest paths on a bounded deformed sphere-like quadric surface

The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry.

<i>Chases and Escapes</i> Mathematics book on pursuit-evasion games

Chases and Escapes: The Mathematics of Pursuit and Evasion is a mathematics book on continuous pursuit–evasion problems. It was written by Paul J. Nahin, and published by the Princeton University Press in 2007. It was reissued as a paperback reprint in 2012. The Basic Library List Committee of the Mathematical Association of America has rated this book as essential for inclusion in undergraduate mathematics libraries.

References

  1. Bouguer, Pierre (1732). "Sur de nouvelles courbes auxquelles on peut donner le nom de lignes de poursuite". Mémoires de mathématique et de physique tirés des registres de l'Académie royale des sciences (in French): 1–15.
  2. Nahin, Paul J. (2007). Chases and Escapes: The Mathematics of Pursuits and Evasion. Princeton University Press. pp. 27–28. ISBN   978-0-691-12514-5.