In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual, sending each point to the point dual to its tangent line. If C is algebraic then so is its dual and the degree of the dual is known as the class of the original curve. The equation of the dual of C, given in line coordinates, is known as the tangential equation of C. Duality is an involution: the dual of the dual of C is the original curve C.
The construction of the dual curve is the geometrical underpinning for the Legendre transformation in the context of Hamiltonian mechanics. [1]
Let f(x, y, z) = 0 be the equation of a curve in homogeneous coordinates on the projective plane. Let Xx + Yy + Zz = 0 be the equation of a line, with (X, Y, Z) being designated its line coordinates in a dual projective plane. The condition that the line is tangent to the curve can be expressed in the form F(X, Y, Z) = 0 which is the tangential equation of the curve.
At a point (p, q, r) on the curve, the tangent is given by
So Xx + Yy + Zz = 0 is a tangent to the curve if
Eliminating p, q, r, and λ from these equations, along with Xp + Yq + Zr = 0, gives the equation in X, Y and Z of the dual curve.
For example, let C be the conic ax2 + by2 + cz2 = 0. The dual is found by eliminating p, q, r, and λ from the equations
The first three equations are easily solved for p, q, r, and substituting in the last equation produces
Clearing 2λ from the denominators, the equation of the dual is
Consider a parametrically defined curve in projective coordinates . Its projective tangent line is a linear plane spanned by the point of tangency and the tangent vector, with linear equation coefficients given by the cross product:
which in affine coordinates is:
The dual of an inflection point will give a cusp and two points sharing the same tangent line will give a self-intersection point on the dual.
From the projective description, one may compute the dual of the dual:
which is projectively equivalent to the original curve .
Properties of the original curve correspond to dual properties on the dual curve. In the Introduction image, the red curve has three singularities – a node in the center, and two cusps at the lower right and lower left. The black curve has no singularities but has four distinguished points: the two top-most points correspond to the node (double point), as they both have the same tangent line, hence map to the same point in the dual curve, while the two inflection points correspond to the cusps, since the tangent lines first go one way then the other (slope increasing, then decreasing).
By contrast, on a smooth, convex curve the angle of the tangent line changes monotonically, and the resulting dual curve is also smooth and convex.
Further, both curves above have a reflectional symmetry: projective duality preserves symmetries a projective space, so dual curves have the same symmetry group. In this case both symmetries are realized as a left-right reflection; this is an artifact of how the space and the dual space have been identified – in general these are symmetries of different spaces.
If X is a plane algebraic curve, then the degree of the dual is the number of points in the intersection with a line in the dual plane. Since a line in the dual plane corresponds to a point in the plane, the degree of the dual is the number of tangents to the X that can be drawn through a given point. The points where these tangents touch the curve are the points of intersection between the curve and the polar curve with respect to the given point. If the degree of the curve is d then the degree of the polar is d − 1 and so the number of tangents that can be drawn through the given point is at most d(d − 1).
The dual of a line (a curve of degree 1) is an exception to this and is taken to be a point in the dual space (namely the original line). The dual of a single point is taken to be the collection of lines though the point; this forms a line in the dual space which corresponds to the original point.
If X is smooth (no singular points) then the dual of X has maximum degree d(d − 1). This implies the dual of a conic is also a conic. Geometrically, the map from a conic to its dual is one-to-one (since no line is tangent to two points of a conic, as that requires degree 4), and the tangent line varies smoothly (as the curve is convex, so the slope of the tangent line changes monotonically: cusps in the dual require an inflection point in the original curve, which requires degree 3).
For curves with singular points, these points will also lie on the intersection of the curve and its polar and this reduces the number of possible tangent lines. The Plücker formulas give the degree of the dual in terms of d and the number and types of singular points of X.
The dual can be visualized as a locus in the plane in the form of the polar reciprocal. This is defined with reference to a fixed conic Q as the locus of the poles of the tangent lines of the curve C. [2] The conic Q is nearly always taken to be a circle, so the polar reciprocal is the inverse of the pedal of C.
Similarly, generalizing to higher dimensions, given a hypersurface, the tangent space at each point gives a family of hyperplanes, and thus defines a dual hypersurface in the dual space. For any closed subvariety X in a projective space, the set of all hyperplanes tangent to some point of X is a closed subvariety of the dual of the projective space, called the dual variety of X.
Examples
The dual curve construction works even if the curve is piecewise linear or piecewise differentiable, but the resulting map is degenerate (if there are linear components) or ill-defined (if there are singular points).
In the case of a polygon, all points on each edge share the same tangent line, and thus map to the same vertex of the dual, while the tangent line of a vertex is ill-defined, and can be interpreted as all the lines passing through it with angle between the two edges. This accords both with projective duality (lines map to points, and points to lines), and with the limit of smooth curves with no linear component: as a curve flattens to an edge, its tangent lines map to closer and closer points; as a curve sharpens to a vertex, its tangent lines spread further apart.
More generally, any convex polyhedron or cone has a polyhedral dual, and any convex set X with boundary hypersurface H has a convex conjugate X* whose boundary is the dual variety H*.
In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:
In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.
In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is tangent to the curve y = f(x) at a point x = c if the line passes through the point (c, f(c)) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.
In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or surface is contained in a larger space, curvature can be defined extrinsically relative to the ambient space. Curvature of Riemannian manifolds of dimension at least two can be defined intrinsically without reference to a larger space.
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.
In geometry, a normal is an object that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point.
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.
In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal pointP, the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X. Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T – the pedal curve is the set of such points X, called the foot of the perpendicular to the tangent T from the fixed point P, as the variable point R ranges over the curve C.
In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.
In geometry, a Cassini oval is a quartic plane curve defined as the locus of points in the plane such that the product of the distances to two fixed points (foci) is constant. This may be contrasted with an ellipse, for which the sum of the distances is constant, rather than the product. Cassini ovals are the special case of polynomial lemniscates when the polynomial used has degree 2.
In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line.
In algebraic geometry, the first polar, or simply polar of an algebraic plane curve C of degree n with respect to a point Q is an algebraic curve of degree n−1 which contains every point of C whose tangent line passes through Q. It is used to investigate the relationship between the curve and its dual, for example in the derivation of the Plücker formulas.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.
In projective geometry, the harmonic conjugate point of a point on the real projective line with respect to two other points is defined by the following construction:
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.
In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section.
In geometry, an intersection is a point, line, or curve common to two or more objects. The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point or does not exist. Other types of geometric intersection include: