Line coordinates

Last updated

In geometry, line coordinates are used to specify the position of a line just as point coordinates (or simply coordinates) are used to specify the position of a point.

Contents

Lines in the plane

There are several possible ways to specify the position of a line in the plane. A simple way is by the pair (m, b) where the equation of the line is y = mx + b. Here m is the slope and b is the y-intercept. This system specifies coordinates for all lines that are not vertical. However, it is more common and simpler algebraically to use coordinates (l, m) where the equation of the line is lx + my + 1 = 0. This system specifies coordinates for all lines except those that pass through the origin. The geometrical interpretations of l and m are the negative reciprocals of the x and y-intercept respectively.

The exclusion of lines passing through the origin can be resolved by using a system of three coordinates (l, m, n) to specify the line with the equation lx + my + n = 0. Here l and m may not both be 0. In this equation, only the ratios between l, m and n are significant, in other words if the coordinates are multiplied by a non-zero scalar then line represented remains the same. So (l, m, n) is a system of homogeneous coordinates for the line.

If points in the real projective plane are represented by homogeneous coordinates (x, y, z), the equation of the line is lx + my + nz = 0, provided (l, m, n) ≠ (0,0,0) . In particular, line coordinate (0, 0, 1) represents the line z = 0, which is the line at infinity in the projective plane. Line coordinates (0, 1, 0) and (1, 0, 0) represent the x and y-axes respectively.

Tangential equations

Just as f(x, y) = 0 can represent a curve as a subset of the points in the plane, the equation φ(l, m) = 0 represents a subset of the lines on the plane. The set of lines on the plane may, in an abstract sense, be thought of as the set of points in a projective plane, the dual of the original plane. The equation φ(l, m) = 0 then represents a curve in the dual plane.

For a curve f(x, y) = 0 in the plane, the tangents to the curve form a curve in the dual space called the dual curve. If φ(l, m) = 0 is the equation of the dual curve, then it is called the tangential equation, for the original curve. A given equation φ(l, m) = 0 represents a curve in the original plane determined as the envelope of the lines that satisfy this equation. Similarly, if φ(l, m, n) is a homogeneous function then φ(l, m, n) = 0 represents a curve in the dual space given in homogeneous coordinates, and may be called the homogeneous tangential equation of the enveloped curve.

Tangential equations are useful in the study of curves defined as envelopes, just as Cartesian equations are useful in the study of curves defined as loci.

Tangential equation of a point

A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation. If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y). Conversely, any line through (x, y) satisfies the original equation, so al + bm + c = 0 is the equation of set of lines through (x, y). For a given point (x, y), the equation of the set of lines though it is lx + my + 1 = 0, so this may be defined as the tangential equation of the point. Similarly, for a point (x, y, z) given in homogeneous coordinates, the equation of the point in homogeneous tangential coordinates is lx + my + nz = 0.

Formulas

The intersection of the lines (l1, m1) and (l2, m2) is the solution to the linear equations

By Cramer's rule, the solution is

The lines (l1, m1), (l2, m2), and (l3, m3) are concurrent when the determinant

For homogeneous coordinates, the intersection of the lines (l1, m1, n1) and (l2, m2, n2) is the cross product:

The lines (l1, m1, n1), (l2, m2, n2) and (l3, m3, n3) are concurrent when the determinant

Dually, the coordinates of the line containing (x1, y1, z1) and (x2, y2, z2) can be obtained via the cross product:

Lines in three-dimensional space

For two given points in the real projective plane, (x1, y1, z1) and (x2, y2, z2), the three determinants

determine the projective line containing them.

Similarly, for two points in RP3, (x1, y1, z1, w1) and (x2, y2, z2, w2), the line containing them is determined by the six determinants

This is the basis for a system of homogeneous line coordinates in three-dimensional space called Plücker coordinates. Six numbers in a set of coordinates only represent a line when they satisfy an additional equation. This system maps the space of lines in three-dimensional space to projective space RP5, but with the additional requirement the space of lines corresponds to the Klein quadric, which is a manifold of dimension four.

More generally, the lines in n-dimensional projective space are determined by a system of n(n  1)/2 homogeneous coordinates that satisfy a set of (n  2)(n  3)/2 conditions, resulting in a manifold of dimension 2n− 2.

With complex numbers

Isaak Yaglom has shown [1] how dual numbers provide coordinates for oriented lines in the Euclidean plane, and split-complex numbers form line coordinates for the hyperbolic plane. The coordinates depend on the presence of an origin and reference line on it. Then, given an arbitrary line its coordinates are found from the intersection with the reference line. The distance s from the origin to the intersection and the angle θ of inclination between the two lines are used:

Since there are lines ultraparallel to the reference line in the Lobachevski plane, they need coordinates too: There is a unique common perpendicular, say s is the distance from the origin to this perpendicular, and d is the length of the segment between reference and the given line.

The motions of the line geometry are described with linear fractional transformations on the appropriate complex planes. [1] :87,123

See also

Related Research Articles

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Tangent</span> In mathematics, straight line touching a plane curve without crossing it

In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is tangent to the curve y = f(x) at a point x = c if the line passes through the point (c, f(c)) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

<span class="mw-page-title-main">Coordinate system</span> Method for specifying point positions

In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the x-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa; this is the basis of analytic geometry.

<span class="mw-page-title-main">Euclidean planes in three-dimensional space</span> Flat surface

In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space . A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin. While a pair of real numbers suffices to describe points on a plane, the relationship with out-of-plane points requires special consideration for their embedding in the ambient space .

<span class="mw-page-title-main">Homogeneous coordinates</span> Coordinate system used in projective geometry

In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. They have the advantage that the coordinates of points, including points at infinity, can be represented using finite coordinates. Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix. They are also used in fundamental elliptic curve cryptography algorithms.

<span class="mw-page-title-main">Anti-de Sitter space</span> Maximally symmetric Lorentzian manifold with a negative cosmological constant

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Paul Dirac was the first person to rigorously explore anti-de Sitter space, doing so in 1963.

In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.

<span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points.

In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, . Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in and points on a quadric in . A predecessor and special case of Grassmann coordinates, Plücker coordinates arise naturally in geometric algebra. They have proved useful for computer graphics, and also can be extended to coordinates for the screws and wrenches in the theory of kinematics used for robot control.

In multilinear algebra, a multivector, sometimes called Clifford number or multor, is an element of the exterior algebra Λ(V) of a vector space V. This algebra is graded, associative and alternating, and consists of linear combinations of simplek-vectors (also known as decomposablek-vectors or k-blades) of the form

<span class="mw-page-title-main">Dual curve</span> Curve in the dual projective plane made from all lines tangent to a given curve

In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual, sending each point to the point dual to its tangent line. If C is algebraic then so is its dual and the degree of the dual is known as the class of the original curve. The equation of the dual of C, given in line coordinates, is known as the tangential equation of C. Duality is an involution: the dual of the dual of C is the original curve C.

<span class="mw-page-title-main">Trilinear coordinates</span> Coordinate system based on distances from the sidelines of a given triangle

In geometry, the trilinear coordinatesx : y : z of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z : x and vertices C and A.

<span class="mw-page-title-main">Bipolar cylindrical coordinates</span>

Bipolar cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional bipolar coordinate system in the perpendicular -direction. The two lines of foci and of the projected Apollonian circles are generally taken to be defined by and , respectively, in the Cartesian coordinate system.

<span class="mw-page-title-main">Oblate spheroidal coordinates</span> Three-dimensional orthogonal coordinate system

Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.

<span class="mw-page-title-main">Differential geometry of surfaces</span> The mathematics of smooth surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Unit hyperbola</span> Geometric figure

In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length

In Euclidean and projective geometry, five points determine a conic, just as two (distinct) points determine a line. There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.

In Euclidean geometry, for a plane curve C and a given fixed point O, the pedal equation of the curve is a relation between r and p where r is the distance from O to a point on C and p is the perpendicular distance from O to the tangent line to C at the point. The point O is called the pedal point and the values r and p are sometimes called the pedal coordinates of a point relative to the curve and the pedal point. It is also useful to measure the distance of O to the normal pc (the contrapedal coordinate) even though it is not an independent quantity and it relates to (r, p) as

Homersham Cox (1857–1918) was an English mathematician.

References

  1. 1 2 3 4 5 Isaak Yaglom (1968) Complex Numbers in Geometry, Academic Press