Prym variety

Last updated

In mathematics, the Prym variety construction (named for Friedrich Prym) is a method in algebraic geometry of making an abelian variety from a morphism of algebraic curves. In its original form, it was applied to an unramified double covering of a Riemann surface, and was used by F. Schottky and H. W. E. Jung in relation with the Schottky problem, as it is now called, of characterising Jacobian varieties among abelian varieties. It is said to have appeared first in the late work of Riemann, and was extensively studied by Wirtinger in 1895, including degenerate cases.

Given a non-constant morphism

φ: C1C2

of algebraic curves, write Ji for the Jacobian variety of Ci. Then from φ construct the corresponding morphism

ψ: J1J2,

which can be defined on a divisor class D of degree zero by applying φ to each point of the divisor. This is a well-defined morphism, often called the norm homomorphism. Then the Prym variety of φ is the kernel of ψ. To qualify that somewhat, to get an abelian variety, the connected component of the identity of the reduced scheme underlying the kernel may be intended. Or in other words take the largest abelian subvariety of J1 on which ψ is trivial.

The theory of Prym varieties was dormant for a long time, until revived by David Mumford around 1970. It now plays a substantial role in some contemporary theories, for example of the Kadomtsev–Petviashvili equation. One advantage of the method is that it allows one to apply the theory of curves to the study of a wider class of abelian varieties than Jacobians. For example, principally polarized abelian varieties (p.p.a.v.'s) of dimension > 3 are not generally Jacobians, but all p.p.a.v.'s of dimension 5 or less are Prym varieties. It is for this reason that p.p.a.v.'s are fairly well understood up to dimension 5.

Related Research Articles

Complex geometry Study of complex manifolds and several complex variables

In mathematics, complex geometry is the study of complex manifolds, complex algebraic varieties, and functions of several complex variables. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

Abelian variety

In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory.

Projective variety

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, in particular algebraic geometry, a moduli space is a geometric space whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces are formal moduli.

David Mumford American mathematician

David Bryant Mumford is an American mathematician known for distinguished work in algebraic geometry, and then for research into vision and pattern theory. He won the Fields Medal and was a MacArthur Fellow. In 2010 he was awarded the National Medal of Science. He is currently a University Professor Emeritus in the Division of Applied Mathematics at Brown University.

In mathematics, the Jacobian varietyJ(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C, hence an abelian variety.

In mathematics, differential of the first kind is a traditional term used in the theories of Riemann surfaces and algebraic curves, for everywhere-regular differential 1-forms. Given a complex manifold M, a differential of the first kind ω is therefore the same thing as a 1-form that is everywhere holomorphic; on an algebraic variety V that is non-singular it would be a global section of the coherent sheaf Ω1 of Kähler differentials. In either case the definition has its origins in the theory of abelian integrals.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are ultimately derived from the notion of divisibility in the integers and algebraic number fields.

In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds.

In mathematics, the theta divisor Θ is the divisor in the sense of algebraic geometry defined on an abelian variety A over the complex numbers by the zero locus of the associated Riemann theta-function. It is therefore an algebraic subvariety of A of dimension dim A − 1.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In mathematics, the Schottky problem, named after Friedrich Schottky, is a classical question of algebraic geometry, asking for a characterisation of Jacobian varieties amongst abelian varieties.

In mathematics, a dual abelian variety can be defined from an abelian variety A, defined over a field K.

In mathematics, a theta characteristic of a non-singular algebraic curve C is a divisor class Θ such that 2Θ is the canonical class, In terms of holomorphic line bundles L on a connected compact Riemann surface, it is therefore L such that L2 is the canonical bundle, here also equivalently the holomorphic cotangent bundle. In terms of algebraic geometry, the equivalent definition is as an invertible sheaf, which squares to the sheaf of differentials of the first kind. Theta characteristics were introduced by Rosenhain (1851)

In mathematics, an algebraic cycle on an algebraic variety V is a formal linear combination of subvarieties of V. These are the part of the algebraic topology of V that is directly accessible by algebraic methods. Understanding the algebraic cycles on a variety can give profound insights into the structure of the variety.

In mathematics, the Abel–Jacobi map is a construction of algebraic geometry which relates an algebraic curve to its Jacobian variety. In Riemannian geometry, it is a more general construction mapping a manifold to its Jacobi torus. The name derives from the theorem of Abel and Jacobi that two effective divisors are linearly equivalent if and only if they are indistinguishable under the Abel–Jacobi map.

This is a timeline of the theory of abelian varieties in algebraic geometry, including elliptic curves.

In algebraic geometry, the homogeneous coordinate ringR of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring

This is a glossary of algebraic geometry.

References