Hypotrochoid

Last updated
The red curve is a hypotrochoid drawn as the smaller black circle rolls around inside the larger blue circle (parameters are R = 5, r = 3, d = 5). HypotrochoidOutThreeFifths.gif
The red curve is a hypotrochoid drawn as the smaller black circle rolls around inside the larger blue circle (parameters are R = 5, r = 3, d = 5).

In geometry, a hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.

Contents

The parametric equations for a hypotrochoid are: [1]

where θ is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because θ is not the polar angle). When measured in radian, θ takes values from 0 to (where LCM is least common multiple).

Special cases include the hypocycloid with d = r and the ellipse with R = 2r and dr. [2] The eccentricity of the ellipse is

becoming 1 when (see Tusi couple).

The ellipse (drawn in red) may be expressed as a special case of the hypotrochoid, with R = 2r (Tusi couple); here R = 10, r = 5, d = 1. Ellipse as hypotrochoid.gif
The ellipse (drawn in red) may be expressed as a special case of the hypotrochoid, with R = 2r (Tusi couple); here R = 10, r = 5, d = 1.

The classic Spirograph toy traces out hypotrochoid and epitrochoid curves.

Hypotrochoids describe the support of the eigenvalues of some random matrices with cyclic correlations. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic regarding the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Parametric equation</span> Representation of a curve by a function of a parameter

In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, as functions of one or several variables called parameters.

<span class="mw-page-title-main">Hypocycloid</span> Curve traced by a point on a circle rolling within another circle

In geometry, a hypocycloid is a special plane curve generated by the trace of a fixed point on a small circle that rolls within a larger circle. As the radius of the larger circle is increased, the hypocycloid becomes more like the cycloid created by rolling a circle on a line.

<span class="mw-page-title-main">Limaçon</span> Type of roulette curve

In geometry, a limaçon or limacon, also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius. It can also be defined as the roulette formed when a circle rolls around a circle with half its radius so that the smaller circle is inside the larger circle. Thus, they belong to the family of curves called centered trochoids; more specifically, they are epitrochoids. The cardioid is the special case in which the point generating the roulette lies on the rolling circle; the resulting curve has a cusp.

<span class="mw-page-title-main">Epicycloid</span> Plane curve traced by a point on a circle rolled around another circle

In geometry, an epicycloid is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle. It is a particular kind of roulette.

<span class="mw-page-title-main">Rose (mathematics)</span> Multi-lobed plane curve

In mathematics, a rose or rhodonea curve is a sinusoid specified by either the cosine or sine functions with no phase angle that is plotted in polar coordinates. Rose curves or "rhodonea" were named by the Italian mathematician who studied them, Guido Grandi, between the years 1723 and 1728.

<span class="mw-page-title-main">Astroid</span> Curve generated by rolling a circle inside another circle with 4x or (4/3)x the radius

In mathematics, an astroid is a particular type of roulette curve: a hypocycloid with four cusps. Specifically, it is the locus of a point on a circle as it rolls inside a fixed circle with four times the radius. By double generation, it is also the locus of a point on a circle as it rolls inside a fixed circle with 4/3 times the radius. It can also be defined as the envelope of a line segment of fixed length that moves while keeping an end point on each of the axes. It is therefore the envelope of the moving bar in the Trammel of Archimedes.

<span class="mw-page-title-main">Deltoid curve</span> Roulette curve made from circles with radii that differ by factors of 3 or 1.5

In geometry, a deltoid curve, also known as a tricuspoid curve or Steiner curve, is a hypocycloid of three cusps. In other words, it is the roulette created by a point on the circumference of a circle as it rolls without slipping along the inside of a circle with three or one-and-a-half times its radius. It is named after the capital Greek letter delta (Δ) which it resembles.

<span class="mw-page-title-main">Pedal curve</span> Curve generated by the projections of a fixed point on the tangents of another curve

In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal pointP, the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X. Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T – the pedal curve is the set of such points X, called the foot of the perpendicular to the tangent T from the fixed point P, as the variable point R ranges over the curve C.

<span class="mw-page-title-main">Cissoid</span> Plane curve constructed from two other curves and a fixed point

In geometry, a cissoid is a plane curve generated from two given curves C1, C2 and a point O. Let L be a variable line passing through O and intersecting C1 at P1 and C2 at P2. Let P be the point on L so that Then the locus of such points P is defined to be the cissoid of the curves C1, C2 relative to O.

<span class="mw-page-title-main">Epitrochoid</span> Plane curve formed by rolling a circle on the outside of another

In geometry, an epitrochoid is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.

In geometry, the area enclosed by a circle of radius r is πr2. Here, the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<span class="mw-page-title-main">Trochoid</span> Curve traced by a circle rolling along a line

In geometry, a trochoid is a roulette curve formed by a circle rolling along a line. It is the curve traced out by a point fixed to a circle as it rolls along a straight line. If the point is on the circle, the trochoid is called common ; if the point is inside the circle, the trochoid is curtate; and if the point is outside the circle, the trochoid is prolate. The word "trochoid" was coined by Gilles de Roberval, referring to the special case of a cycloid.

<span class="mw-page-title-main">Inverse curve</span> Curve created by a geometric operation

In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k2. The inverse of the curve C is then the locus of P as Q runs over C. The point O in this construction is called the center of inversion, the circle the circle of inversion, and k the radius of inversion.

<span class="mw-page-title-main">Radius of curvature</span> Radius of the circle which best approximates a curve at a given point

In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof.

<span class="mw-page-title-main">Cyclocycloid</span>

A cyclocycloid is a roulette traced by a point attached to a circle of radius r rolling around, a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.

References

  1. J. Dennis Lawrence (1972). A catalog of special plane curves . Dover Publications. pp.  165–168. ISBN   0-486-60288-5.
  2. Gray, Alfred (29 December 1997). Modern Differential Geometry of Curves and Surfaces with Mathematica (Second ed.). CRC Press. p. 906. ISBN   9780849371646.
  3. Aceituno, Pau Vilimelis; Rogers, Tim; Schomerus, Henning (2019-07-16). "Universal hypotrochoidic law for random matrices with cyclic correlations". Physical Review E. 100 (1): 010302. arXiv: 1812.07055 . Bibcode:2019PhRvE.100a0302A. doi:10.1103/PhysRevE.100.010302. PMID   31499759. S2CID   119325369.