In plasma physics, the particle-in-cell (PIC) method refers to a technique used to solve a certain class of partial differential equations. In this method, individual particles (or fluid elements) in a Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents are computed simultaneously on Eulerian (stationary) mesh points.
PIC methods were already in use as early as 1955, [1] even before the first Fortran compilers were available. The method gained popularity for plasma simulation in the late 1950s and early 1960s by Buneman, Dawson, Hockney, Birdsall, Morse and others. In plasma physics applications, the method amounts to following the trajectories of charged particles in self-consistent electromagnetic (or electrostatic) fields computed on a fixed mesh. [2]
For many types of problems, the classical PIC method invented by Buneman, Dawson, Hockney, Birdsall, Morse and others is relatively intuitive and straightforward to implement. This probably accounts for much of its success, particularly for plasma simulation, for which the method typically includes the following procedures:
Models which include interactions of particles only through the average fields are called PM (particle-mesh). Those which include direct binary interactions are PP (particle-particle). Models with both types of interactions are called PP-PM or P3M.
Since the early days, it has been recognized that the PIC method is susceptible to error from so-called discrete particle noise. [3] This error is statistical in nature, and today it remains less-well understood than for traditional fixed-grid methods, such as Eulerian or semi-Lagrangian schemes.
Modern geometric PIC algorithms are based on a very different theoretical framework. These algorithms use tools of discrete manifold, interpolating differential forms, and canonical or non-canonical symplectic integrators to guarantee gauge invariant and conservation of charge, energy-momentum, and more importantly the infinitely dimensional symplectic structure of the particle-field system. [4] [5] These desired features are attributed to the fact that geometric PIC algorithms are built on the more fundamental field-theoretical framework and are directly linked to the perfect form, i.e., the variational principle of physics.
Inside the plasma research community, systems of different species (electrons, ions, neutrals, molecules, dust particles, etc.) are investigated. The set of equations associated with PIC codes are therefore the Lorentz force as the equation of motion, solved in the so-called pusher or particle mover of the code, and Maxwell's equations determining the electric and magnetic fields, calculated in the (field) solver.
The real systems studied are often extremely large in terms of the number of particles they contain. In order to make simulations efficient or at all possible, so-called super-particles are used. A super-particle (or macroparticle) is a computational particle that represents many real particles; it may be millions of electrons or ions in the case of a plasma simulation, or, for instance, a vortex element in a fluid simulation. It is allowed to rescale the number of particles, because the acceleration from the Lorentz force depends only on the charge-to-mass ratio, so a super-particle will follow the same trajectory as a real particle would.
The number of real particles corresponding to a super-particle must be chosen such that sufficient statistics can be collected on the particle motion. If there is a significant difference between the density of different species in the system (between ions and neutrals, for instance), separate real to super-particle ratios can be used for them.
Even with super-particles, the number of simulated particles is usually very large (> 105), and often the particle mover is the most time consuming part of PIC, since it has to be done for each particle separately. Thus, the pusher is required to be of high accuracy and speed and much effort is spent on optimizing the different schemes.
The schemes used for the particle mover can be split into two categories, implicit and explicit solvers. While implicit solvers (e.g. implicit Euler scheme) calculate the particle velocity from the already updated fields, explicit solvers use only the old force from the previous time step, and are therefore simpler and faster, but require a smaller time step. In PIC simulation the leapfrog method is used, a second-order explicit method. [6] Also the Boris algorithm is used which cancel out the magnetic field in the Newton-Lorentz equation. [7] [8]
For plasma applications, the leapfrog method takes the following form:
where the subscript refers to "old" quantities from the previous time step, to updated quantities from the next time step (i.e. ), and velocities are calculated in-between the usual time steps .
The equations of the Boris scheme which are substitute in the above equations are:
with
and .
Because of its excellent long term accuracy, the Boris algorithm is the de facto standard for advancing a charged particle. It was realized that the excellent long term accuracy of nonrelativistic Boris algorithm is due to the fact it conserves phase space volume, even though it is not symplectic. The global bound on energy error typically associated with symplectic algorithms still holds for the Boris algorithm, making it an effective algorithm for the multi-scale dynamics of plasmas. It has also been shown [9] that one can improve on the relativistic Boris push to make it both volume preserving and have a constant-velocity solution in crossed E and B fields.
The most commonly used methods for solving Maxwell's equations (or more generally, partial differential equations (PDE)) belong to one of the following three categories:
With the FDM, the continuous domain is replaced with a discrete grid of points, on which the electric and magnetic fields are calculated. Derivatives are then approximated with differences between neighboring grid-point values and thus PDEs are turned into algebraic equations.
Using FEM, the continuous domain is divided into a discrete mesh of elements. The PDEs are treated as an eigenvalue problem and initially a trial solution is calculated using basis functions that are localized in each element. The final solution is then obtained by optimization until the required accuracy is reached.
Also spectral methods, such as the fast Fourier transform (FFT), transform the PDEs into an eigenvalue problem, but this time the basis functions are high order and defined globally over the whole domain. The domain itself is not discretized in this case, it remains continuous. Again, a trial solution is found by inserting the basis functions into the eigenvalue equation and then optimized to determine the best values of the initial trial parameters.
The name "particle-in-cell" originates in the way that plasma macro-quantities (number density, current density, etc.) are assigned to simulation particles (i.e., the particle weighting). Particles can be situated anywhere on the continuous domain, but macro-quantities are calculated only on the mesh points, just as the fields are. To obtain the macro-quantities, one assumes that the particles have a given "shape" determined by the shape function
where is the coordinate of the particle and the observation point. Perhaps the easiest and most used choice for the shape function is the so-called cloud-in-cell (CIC) scheme, which is a first order (linear) weighting scheme. Whatever the scheme is, the shape function has to satisfy the following conditions: [10] space isotropy, charge conservation, and increasing accuracy (convergence) for higher-order terms.
The fields obtained from the field solver are determined only on the grid points and can't be used directly in the particle mover to calculate the force acting on particles, but have to be interpolated via the field weighting:
where the subscript labels the grid point. To ensure that the forces acting on particles are self-consistently obtained, the way of calculating macro-quantities from particle positions on the grid points and interpolating fields from grid points to particle positions has to be consistent, too, since they both appear in Maxwell's equations. Above all, the field interpolation scheme should conserve momentum. This can be achieved by choosing the same weighting scheme for particles and fields and by ensuring the appropriate space symmetry (i.e. no self-force and fulfilling the action-reaction law) of the field solver at the same time [10]
As the field solver is required to be free of self-forces, inside a cell the field generated by a particle must decrease with decreasing distance from the particle, and hence inter-particle forces inside the cells are underestimated. This can be balanced with the aid of Coulomb collisions between charged particles. Simulating the interaction for every pair of a big system would be computationally too expensive, so several Monte Carlo methods have been developed instead. A widely used method is the binary collision model, [11] in which particles are grouped according to their cell, then these particles are paired randomly, and finally the pairs are collided.
In a real plasma, many other reactions may play a role, ranging from elastic collisions, such as collisions between charged and neutral particles, over inelastic collisions, such as electron-neutral ionization collision, to chemical reactions; each of them requiring separate treatment. Most of the collision models handling charged-neutral collisions use either the direct Monte-Carlo scheme, in which all particles carry information about their collision probability, or the null-collision scheme, [12] [13] which does not analyze all particles but uses the maximum collision probability for each charged species instead.
As in every simulation method, also in PIC, the time step and the grid size must be well chosen, so that the time and length scale phenomena of interest are properly resolved in the problem. In addition, time step and grid size affect the speed and accuracy of the code.
For an electrostatic plasma simulation using an explicit time integration scheme (e.g. leapfrog, which is most commonly used), two important conditions regarding the grid size and the time step should be fulfilled in order to ensure the stability of the solution:
which can be derived considering the harmonic oscillations of a one-dimensional unmagnetized plasma. The latter conditions is strictly required but practical considerations related to energy conservation suggest to use a much stricter constraint where the factor 2 is replaced by a number one order of magnitude smaller. The use of is typical. [10] [14] Not surprisingly, the natural time scale in the plasma is given by the inverse plasma frequency and length scale by the Debye length .
For an explicit electromagnetic plasma simulation, the time step must also satisfy the CFL condition:
where , and is the speed of light.
Within plasma physics, PIC simulation has been used successfully to study laser-plasma interactions, electron acceleration and ion heating in the auroral ionosphere, magnetohydrodynamics, magnetic reconnection, as well as ion-temperature-gradient and other microinstabilities in tokamaks, furthermore vacuum discharges, and dusty plasmas.
Hybrid models may use the PIC method for the kinetic treatment of some species, while other species (that are Maxwellian) are simulated with a fluid model.
PIC simulations have also been applied outside of plasma physics to problems in solid and fluid mechanics. [15] [16]
Computational application | Web site | License | Availability | Canonical Reference |
---|---|---|---|---|
SHARP | [17] | Proprietary | doi : 10.3847/1538-4357/aa6d13 | |
ALaDyn | [18] | GPLv3+ | Open Repo: [19] | doi : 10.5281/zenodo.49553 |
EPOCH | [20] | GPLv3 | Open Repo: [21] | doi : 10.1088/0741-3335/57/11/113001 |
FBPIC | [22] | 3-Clause-BSD-LBNL | Open Repo: [23] | doi : 10.1016/j.cpc.2016.02.007 |
LSP | [24] | Proprietary | Available from ATK | doi : 10.1016/S0168-9002(01)00024-9 |
MAGIC | [25] | Proprietary | Available from ATK | doi : 10.1016/0010-4655(95)00010-D |
OSIRIS | [26] | GNU AGPL | Open Repo [27] | doi : 10.1007/3-540-47789-6_36 |
PhotonPlasma | [28] | Unknown | Open Repo: [29] | doi : 10.1063/1.4811384 |
PICCANTE | [30] | GPLv3+ | Open Repo: [31] | doi : 10.5281/zenodo.48703 |
PICLas | [32] | GPLv3+ | Open Repo: [33] | doi : 10.1016/j.crme.2014.07.005 |
PICMC | [34] | Proprietary | Available from Fraunhofer IST | |
PIConGPU | [35] | GPLv3+ | Open Repo: [36] | doi : 10.1145/2503210.2504564 |
SMILEI | [37] | CeCILL-B | Open Repo: [38] | doi : 10.1016/j.cpc.2017.09.024 |
iPIC3D | [39] | Apache License 2.0 | Open Repo: [40] | doi : 10.1016/j.matcom.2009.08.038 |
The Virtual Laser Plasma Lab (VLPL) | [41] | Proprietary | Unknown | doi : 10.1017/S0022377899007515 |
Tristan v2 | [42] | 3-Clause-BSD | Open source, [43] but also has a private version with QED/radiative [44] modules | doi : 10.5281/zenodo.7566725 [45] |
VizGrain | [46] | Proprietary | Commercially available from Esgee Technologies Inc. | |
VPIC | [47] | 3-Clause-BSD | Open Repo: [48] | doi : 10.1063/1.2840133 |
VSim (Vorpal) | [49] | Proprietary | Available from Tech-X Corporation | doi : 10.1016/j.jcp.2003.11.004 |
Warp | [50] | 3-Clause-BSD-LBNL | Open Repo: [51] | doi : 10.1063/1.860024 |
WarpX | [52] | 3-Clause-BSD-LBNL | Open Repo: [53] | doi : 10.1016/j.nima.2018.01.035 |
ZPIC | [54] | AGPLv3+ | Open Repo: [55] | |
ultraPICA | Proprietary | Commercially available from Plasma Taiwan Innovation Corporation. |
In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.
In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as where the vector r is the relative position between the charges. This interaction complicates the theoretical treatment of the fluid. For example, a naive quantum mechanical calculation of the ground-state energy density yields infinity, which is unreasonable. The difficulty lies in the fact that even though the Coulomb force diminishes with distance as 1/r2, the average number of particles at each distance r is proportional to r2, assuming the fluid is fairly isotropic. As a result, a charge fluctuation at any one point has non-negligible effects at large distances.
Verlet integration is a numerical method used to integrate Newton's equations of motion. It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics. The algorithm was first used in 1791 by Jean Baptiste Delambre and has been rediscovered many times since then, most recently by Loup Verlet in the 1960s for use in molecular dynamics. It was also used by P. H. Cowell and A. C. C. Crommelin in 1909 to compute the orbit of Halley's Comet, and by Carl Størmer in 1907 to study the trajectories of electrical particles in a magnetic field . The Verlet integrator provides good numerical stability, as well as other properties that are important in physical systems such as time reversibility and preservation of the symplectic form on phase space, at no significant additional computational cost over the simple Euler method.
The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium; it was devised by Ludwig Boltzmann in 1872. The classic example of such a system is a fluid with temperature gradients in space causing heat to flow from hotter regions to colder ones, by the random but biased transport of the particles making up that fluid. In the modern literature the term Boltzmann equation is often used in a more general sense, referring to any kinetic equation that describes the change of a macroscopic quantity in a thermodynamic system, such as energy, charge or particle number.
Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.
In mathematics, a symplectic integrator (SI) is a numerical integration scheme for Hamiltonian systems. Symplectic integrators form the subclass of geometric integrators which, by definition, are canonical transformations. They are widely used in nonlinear dynamics, molecular dynamics, discrete element methods, accelerator physics, plasma physics, quantum physics, and celestial mechanics.
Direct simulation Monte Carlo (DSMC) method uses probabilistic Monte Carlo simulation to solve the Boltzmann equation for finite Knudsen number fluid flows.
Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating the electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.
In physics and astronomy, an N-body simulation is a simulation of a dynamical system of particles, usually under the influence of physical forces, such as gravity. N-body simulations are widely used tools in astrophysics, from investigating the dynamics of few-body systems like the Earth-Moon-Sun system to understanding the evolution of the large-scale structure of the universe. In physical cosmology, N-body simulations are used to study processes of non-linear structure formation such as galaxy filaments and galaxy halos from the influence of dark matter. Direct N-body simulations are used to study the dynamical evolution of star clusters.
The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.
In computational chemistry, a constraint algorithm is a method for satisfying the Newtonian motion of a rigid body which consists of mass points. A restraint algorithm is used to ensure that the distance between mass points is maintained. The general steps involved are: (i) choose novel unconstrained coordinates, (ii) introduce explicit constraint forces, (iii) minimize constraint forces implicitly by the technique of Lagrange multipliers or projection methods.
Gyrokinetic ElectroMagnetic (GEM) is a gyrokinetic plasma turbulence simulation that uses the particle-in-cell method. It is used to study waves, instabilities and nonlinear behavior of tokamak fusion plasmas. Information about GEM can be found at the GEM web page. There are two versions of GEM, one is a flux-tube version and the other one is a global general geometry version. Both versions of GEM use a field-aligned coordinate system. Ions are treated kinetically, but averaged over their gyro-obits and electrons are treated as drift-kinetic.
In computational fluid dynamics, the volume of fluid (VOF) method is a family of free-surface modelling techniques, i.e. numerical techniques for tracking and locating the free surface. They belong to the class of Eulerian methods which are characterized by a mesh that is either stationary or is moving in a certain prescribed manner to accommodate the evolving shape of the interface. As such, VOF methods are advection schemes capturing the shape and position of the interface, but are not standalone flow solving algorithms. The Navier–Stokes equations describing the motion of the flow have to be solved separately.
Gyrokinetics is a theoretical framework to study plasma behavior on perpendicular spatial scales comparable to the gyroradius and frequencies much lower than the particle cyclotron frequencies. These particular scales have been experimentally shown to be appropriate for modeling plasma turbulence. The trajectory of charged particles in a magnetic field is a helix that winds around the field line. This trajectory can be decomposed into a relatively slow motion of the guiding center along the field line and a fast circular motion, called gyromotion. For most plasma behavior, this gyromotion is irrelevant. Averaging over this gyromotion reduces the equations to six dimensions rather than the seven. Because of this simplification, gyrokinetics governs the evolution of charged rings with a guiding center position, instead of gyrating charged particles.
Multi-particle collision dynamics (MPC), also known as stochastic rotation dynamics (SRD), is a particle-based mesoscale simulation technique for complex fluids which fully incorporates thermal fluctuations and hydrodynamic interactions. Coupling of embedded particles to the coarse-grained solvent is achieved through molecular dynamics.
The multiphase particle-in-cell method (MP-PIC) is a numerical method for modeling particle-fluid and particle-particle interactions in a computational fluid dynamics (CFD) calculation. The MP-PIC method achieves greater stability than its particle-in-cell predecessor by simultaneously treating the solid particles as computational particles and as a continuum. In the MP-PIC approach, the particle properties are mapped from the Lagrangian coordinates to an Eulerian grid through the use of interpolation functions. After evaluation of the continuum derivative terms, the particle properties are mapped back to the individual particles. This method has proven to be stable in dense particle flows, computationally efficient, and physically accurate. This has allowed the MP-PIC method to be used as particle-flow solver for the simulation of industrial-scale chemical processes involving particle-fluid flows.
The Hamiltonian Monte Carlo algorithm is a Markov chain Monte Carlo method for obtaining a sequence of random samples whose distribution converges to a target probability distribution that is difficult to sample directly. This sequence can be used to estimate integrals of the target distribution, such as expected values and moments.
The quantum Boltzmann equation, also known as the Uehling-Uhlenbeck equation, is the quantum mechanical modification of the Boltzmann equation, which gives the nonequilibrium time evolution of a gas of quantum-mechanically interacting particles. Typically, the quantum Boltzmann equation is given as only the “collision term” of the full Boltzmann equation, giving the change of the momentum distribution of a locally homogeneous gas, but not the drift and diffusion in space. It was originally formulated by L.W. Nordheim (1928), and by and E. A. Uehling and George Uhlenbeck (1933).
Hybrid stochastic simulations are a sub-class of stochastic simulations. These simulations combine existing stochastic simulations with other stochastic simulations or algorithms. Generally they are used for physics and physics-related research. The goal of a hybrid stochastic simulation varies based on context, however they typically aim to either improve accuracy or reduce computational complexity. The first hybrid stochastic simulation was developed in 1985.
Momentum mapping format is a key technique in the Material Point Method (MPM) for transferring physical quantities such as momentum, mass, and stress between a material point and a background grid.
{{cite journal}}
: External link in |website=
(help){{cite journal}}
: External link in |website=
(help)