High-resolution scheme

Last updated
Typical high-resolution scheme based on MUSCL reconstruction. MUSCL HiRes.jpg
Typical high-resolution scheme based on MUSCL reconstruction.

High-resolution schemes are used in the numerical solution of partial differential equations where high accuracy is required in the presence of shocks or discontinuities. They have the following properties:

General methods are often not adequate for accurate resolution of steep gradient phenomena; they usually introduce non-physical effects such as smearing of the solution or spurious oscillations. Since publication of Godunov's order barrier theorem, which proved that linear methods cannot provide non-oscillatory solutions higher than first order (Godunov 1954, Godunov 1959), these difficulties have attracted much attention and a number of techniques have been developed that largely overcome these problems. To avoid spurious or non-physical oscillations where shocks are present, schemes that exhibit a Total Variation Diminishing (TVD) characteristic are especially attractive. Two techniques that are proving to be particularly effective are MUSCL (Monotone Upstream-Centered Schemes for Conservation Laws), a flux/slope limiter method (van Leer 1979, Hirsch 1991, Anderson, Tannehill & Pletcher 2016, Laney 1998, Toro 1999) and the WENO (Weighted Essentially Non-Oscillatory) method (Shu 1998, Shu 2009). Both methods are usually referred to as high resolution schemes (see diagram).

MUSCL methods are generally second-order accurate in smooth regions (although they can be formulated for higher orders) and provide good resolution, monotonic solutions around discontinuities. They are straightforward to implement and are computationally efficient.

For problems comprising both shocks and complex smooth solution structure, WENO schemes can provide higher accuracy than second-order schemes along with good resolution around discontinuities. Most applications tend to use a fifth order accurate WENO scheme, whilst higher order schemes can be used where the problem demands improved accuracy in smooth regions.

The method of holistic discretisation systematically analyses subgrid scale dynamics to algebraically construct closures for numerical discretisations that are both accurate to any specified order of error in smooth regions, and automatically adapt to cater for rapid grid variations through the algebraic learning of subgrid structures (Roberts 2003). A web service analyses any PDE in a class that may be submitted.

See also

Related Research Articles

<span class="mw-page-title-main">Computational fluid dynamics</span> Analysis and solving of problems that involve fluid flows

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are conservative. Another advantage of the finite volume method is that it is easily formulated to allow for unstructured meshes. The method is used in many computational fluid dynamics packages. "Finite volume" refers to the small volume surrounding each node point on a mesh.

In numerical analysis, adaptive mesh refinement (AMR) is a method of adapting the accuracy of a solution within certain sensitive or turbulent regions of simulation, dynamically and during the time the solution is being calculated. When solutions are calculated numerically, they are often limited to pre-determined quantified grids as in the Cartesian plane which constitute the computational grid, or 'mesh'. Many problems in numerical analysis, however, do not require a uniform precision in the numerical grids used for graph plotting or computational simulation, and would be better suited if specific areas of graphs which needed precision could be refined in quantification only in the regions requiring the added precision. Adaptive mesh refinement provides such a dynamic programming environment for adapting the precision of the numerical computation based on the requirements of a computation problem in specific areas of multi-dimensional graphs which need precision while leaving the other regions of the multi-dimensional graphs at lower levels of precision and resolution.

<span class="mw-page-title-main">Stanley Osher</span> American mathematician (born 1942)

Stanley Osher is an American mathematician, known for his many contributions in shock capturing, level-set methods, and PDE-based methods in computer vision and image processing. Osher is a professor at the University of California, Los Angeles (UCLA), Director of Special Projects in the Institute for Pure and Applied Mathematics (IPAM) and member of the California NanoSystems Institute (CNSI) at UCLA.

<span class="mw-page-title-main">Mesh generation</span> Subdivision of space into cells

Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI, depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine in areas that are important for the subsequent calculations.

The advection upstream splitting method (AUSM) is developed as a numerical inviscid flux function for solving a general system of conservation equations. It is based on the upwind concept and was motivated to provide an alternative approach to other upwind methods, such as the Godunov method, flux difference splitting methods by Roe, and Solomon and Osher, flux vector splitting methods by Van Leer, and Steger and Warming. The AUSM first recognizes that the inviscid flux consist of two physically distinct parts, i.e., convective and pressure fluxes. The former is associated with the flow (advection) speed, while the latter with the acoustic speed; or respectively classified as the linear and nonlinear fields. Currently, the convective and pressure fluxes are formulated using the eigenvalues of the flux Jacobian matrices. The method was originally proposed by Liou and Steffen for the typical compressible aerodynamic flows, and later substantially improved in to yield a more accurate and robust version. To extend its capabilities, it has been further developed in for all speed-regimes and multiphase flow. Its variants have also been proposed.

<span class="mw-page-title-main">Sergei K. Godunov</span>

Sergei Konstantinovich Godunov is a Soviet and Russian professor at the Sobolev Institute of Mathematics of the Russian Academy of Sciences in Novosibirsk, Russia.

In numerical methods, total variation diminishing (TVD) is a property of certain discretization schemes used to solve hyperbolic partial differential equations. The most notable application of this method is in computational fluid dynamics. The concept of TVD was introduced by Ami Harten.

In numerical analysis and computational fluid dynamics, Godunov's theorem — also known as Godunov's order barrier theorem — is a mathematical theorem important in the development of the theory of high resolution schemes for the numerical solution of partial differential equations.

Flux limiters are used in high resolution schemes – numerical schemes used to solve problems in science and engineering, particularly fluid dynamics, described by partial differential equations (PDEs). They are used in high resolution schemes, such as the MUSCL scheme, to avoid the spurious oscillations (wiggles) that would otherwise occur with high order spatial discretization schemes due to shocks, discontinuities or sharp changes in the solution domain. Use of flux limiters, together with an appropriate high resolution scheme, make the solutions total variation diminishing (TVD).

In numerical analysis and computational fluid dynamics, Godunov's scheme is a conservative numerical scheme, suggested by S. K. Godunov in 1959, for solving partial differential equations. One can think of this method as a conservative finite-volume method which solves exact, or approximate Riemann problems at each inter-cell boundary. In its basic form, Godunov's method is first order accurate in both space and time, yet can be used as a base scheme for developing higher-order methods.

In the study of partial differential equations, the MUSCL scheme is a finite volume method that can provide highly accurate numerical solutions for a given system, even in cases where the solutions exhibit shocks, discontinuities, or large gradients. MUSCL stands for Monotonic Upstream-centered Scheme for Conservation Laws, and the term was introduced in a seminal paper by Bram van Leer. In this paper he constructed the first high-order, total variation diminishing (TVD) scheme where he obtained second order spatial accuracy.

<span class="mw-page-title-main">Bram van Leer</span>

Bram van Leer is Arthur B. Modine Emeritus Professor of aerospace engineering at the University of Michigan, in Ann Arbor. He specializes in Computational fluid dynamics (CFD), fluid dynamics, and numerical analysis. His most influential work lies in CFD, a field he helped modernize from 1970 onwards. An appraisal of his early work has been given by C. Hirsch (1979)

<span class="mw-page-title-main">Riemann solver</span> Numerical method used to solve a Riemann problem

A Riemann solver is a numerical method used to solve a Riemann problem. They are heavily used in computational fluid dynamics and computational magnetohydrodynamics.

In computational fluid dynamics, shock-capturing methods are a class of techniques for computing inviscid flows with shock waves. The computation of flow containing shock waves is an extremely difficult task because such flows result in sharp, discontinuous changes in flow variables such as pressure, temperature, density, and velocity across the shock.

<span class="mw-page-title-main">Ami Harten</span>

Amiram Harten was an American/Israeli applied mathematician. Harten made fundamental contribution to the development of high-resolution schemes for the solution of hyperbolic partial differential equations. Among other contributions, he developed the total variation diminishing scheme, which gives an oscillation free solution for flow with shocks.

Chi-Wang Shu is the Theodore B. Stowell University Professor of Applied Mathematics at Brown University. He is known for his research in the fields of computational fluid dynamics, numerical solutions of conservation laws and Hamilton–Jacobi type equations. Shu has been listed as an ISI Highly Cited Author in Mathematics by the ISI Web of Knowledge.

In numerical mathematics, Beam and Warming scheme or Beam–Warming implicit scheme introduced in 1978 by Richard M. Beam and R. F. Warming, is a second order accurate implicit scheme, mainly used for solving non-linear hyperbolic equations. It is not used much nowadays.

In numerical solution of differential equations, WENO methods are classes of high-resolution schemes. WENO are used in the numerical solution of hyperbolic partial differential equations. These methods were developed from ENO methods. The first WENO scheme was developed by Liu, Osher and Chan in 1994. In 1996, Guang-Sh and Chi-Wang Shu developed a new WENO scheme called WENO-JS. Nowadays, there are many WENO methods.

ENO methods are classes of high-resolution schemes in numerical solution of differential equations.

References