Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan [2] and Lucy [3] in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method (where the co-ordinates move with the fluid), and the resolution of the method can easily be adjusted with respect to variables such as density.
Smoothed-particle hydrodynamics is being increasingly used to model fluid motion as well. This is due to several benefits over traditional grid-based techniques. First, SPH guarantees conservation of mass without extra computation since the particles themselves represent mass. Second, SPH computes pressure from weighted contributions of neighboring particles rather than by solving linear systems of equations. Finally, unlike grid-based techniques, which must track fluid boundaries, SPH creates a free surface for two-phase interacting fluids directly since the particles represent the denser fluid (usually water) and empty space represents the lighter fluid (usually air). For these reasons, it is possible to simulate fluid motion using SPH in real time. However, both grid-based and SPH techniques still require the generation of renderable free surface geometry using a polygonization technique such as metaballs and marching cubes, point splatting, or 'carpet' visualization. For gas dynamics it is more appropriate to use the kernel function itself to produce a rendering of gas column density (e.g., as done in the SPLASH visualisation package).
One drawback over grid-based techniques is the need for large numbers of particles to produce simulations of equivalent resolution. In the typical implementation of both uniform grids and SPH particle techniques, many voxels or particles will be used to fill water volumes that are never rendered. However, accuracy can be significantly higher with sophisticated grid-based techniques, especially those coupled with particle methods (such as particle level sets), since it is easier to enforce the incompressibility condition in these systems. SPH for fluid simulation is being used increasingly in real-time animation and games where accuracy is not as critical as interactivity.
Recent work in SPH for fluid simulation has increased performance, accuracy, and areas of application:
Smoothed-particle hydrodynamics's adaptive resolution, numerical conservation of physically conserved quantities, and ability to simulate phenomena covering many orders of magnitude make it ideal for computations in theoretical astrophysics. [22]
Simulations of galaxy formation, star formation, stellar collisions, [23] supernovae [24] and meteor impacts are some of the wide variety of astrophysical and cosmological uses of this method.
SPH is used to model hydrodynamic flows, including possible effects of gravity. Incorporating other astrophysical processes which may be important, such as radiative transfer and magnetic fields is an active area of research in the astronomical community, and has had some limited success. [25] [26]
Libersky and Petschek [27] [28] extended SPH to Solid Mechanics. The main advantage of SPH in this application is the possibility of dealing with larger local distortion than grid-based methods. This feature has been exploited in many applications in Solid Mechanics: metal forming, impact, crack growth, fracture, fragmentation, etc.
Another important advantage of meshfree methods in general, and of SPH in particular, is that mesh dependence problems are naturally avoided given the meshfree nature of the method. In particular, mesh alignment is related to problems involving cracks and it is avoided in SPH due to the isotropic support of the kernel functions. However, classical SPH formulations suffer from tensile instabilities [29] and lack of consistency. [30] Over the past years, different corrections have been introduced to improve the accuracy of the SPH solution, leading to the RKPM by Liu et al. [31] Randles and Libersky [32] and Johnson and Beissel [33] tried to solve the consistency problem in their study of impact phenomena.
Dyka et al. [34] [35] and Randles and Libersky [36] introduced the stress-point integration into SPH and Ted Belytschko et al. [37] showed that the stress-point technique removes the instability due to spurious singular modes, while tensile instabilities can be avoided by using a Lagrangian kernel. Many other recent studies can be found in the literature devoted to improve the convergence of the SPH method.
Recent improvements in understanding the convergence and stability of SPH have allowed for more widespread applications in Solid Mechanics. Other examples of applications and developments of the method include:
The Smoothed-Particle Hydrodynamics (SPH) method works by dividing the fluid into a set of discrete moving elements , referred to as particles. Their Lagrangian nature allows setting their position by integration of their velocity as:
These particles interact through a kernel function with characteristic radius known as the "smoothing length", typically represented in equations by . This means that the physical quantity of any particle can be obtained by summing the relevant properties of all the particles that lie within the range of the kernel, the latter being used as a weighting function . This can be understood in two steps. First an arbitrary field is written as a convolution with :
The error in making the above approximation is order . Secondly, the integral is approximated using a Riemann summation over the particles:
where the summation over includes all particles in the simulation. is the volume of particle , is the value of the quantity for particle and denotes position. For example, the density of particle can be expressed as:
where denotes the particle mass and the particle density, while is a short notation for . The error done in approximating the integral by a discrete sum depends on , on the particle size (i.e. , being the space dimension), and on the particle arrangement in space. The latter effect is still poorly known. [43]
Kernel functions commonly used include the Gaussian function, the quintic spline and the Wendland kernel. [44] The latter two kernels are compactly supported (unlike the Gaussian, where there is a small contribution at any finite distance away), with support proportional to . This has the advantage of saving computational effort by not including the relatively minor contributions from distant particles.
Although the size of the smoothing length can be fixed in both space and time, this does not take advantage of the full power of SPH. By assigning each particle its own smoothing length and allowing it to vary with time, the resolution of a simulation can be made to automatically adapt itself depending on local conditions. For example, in a very dense region where many particles are close together, the smoothing length can be made relatively short, yielding high spatial resolution. Conversely, in low-density regions where individual particles are far apart and the resolution is low, the smoothing length can be increased, optimising the computation for the regions of interest.
For particles of constant mass, differentiating the interpolated density with respect to time yields
where is the gradient of with respect to . Comparing this equation with the continuity equation in the Lagrangian description (using material derivatives),
it is apparent that its right-hand side is an approximation of ; hence one defines a discrete divergence operator as follows:
This operator gives an SPH approximation of at the particle for a given set of particles with given masses , positions and velocities .
The other important equation for a compressible inviscid fluid is the Euler equation for momentum balance:
Similarly to continuity, the task is to define a discrete gradient operator in order to write
One choice is
which has the property of being skew-adjoint with the divergence operator above, in the sense that
this being a discrete version of the continuum identity
This property leads to nice conservation properties. [45]
Notice also that this choice leads to a symmetric divergence operator and antisymmetric gradient. Although there are several ways of discretizing the pressure gradient in the Euler equations, the above antisymmetric form is the most acknowledged one. It supports strict conservation of linear and angular momentum. This means that a force that is exerted on particle by particle equals the one that is exerted on particle by particle including the sign change of the effective direction, thanks to the antisymmetry property .
Nevertheless, other operators have been proposed, which may perform better numerically or physically. For instance, one drawback of these operators is that while the divergence is zero-order consistent (i.e. yields zero when applied to a constant vector field), it can be seen that the gradient is not. Several techniques have been proposed to circumvent this issue, leading to renormalized operators (see e.g. [46] ).
The above SPH governing equations can be derived from a least action principle, starting from the Lagrangian of a particle system:
where is the particle specific internal energy. The Euler–Lagrange equation of variational mechanics reads, for each particle:
When applied to the above Lagrangian, it gives the following momentum equation:
where the chain rule has been used, since depends on , and the latter, on the position of the particles. Using the thermodynamic property we may write
Plugging the SPH density interpolation and differentiating explicitly leads to
which is the SPH momentum equation already mentioned, where we recognize the operator. This explains why linear momentum is conserved, and allows conservation of angular momentum and energy to be conserved as well. [47]
From the work done in the 80's and 90's on numerical integration of point-like particles in large accelerators, appropriate time integrators have been developed with accurate conservation properties on the long term; they are called symplectic integrators. The most popular in the SPH literature is the leapfrog scheme, which reads for each particle :
where is the time step, superscripts stand for time iterations while is the particle acceleration, given by the right-hand side of the momentum equation.
Other symplectic integrators exist (see the reference textbook [48] ). It is recommended to use a symplectic (even low-order) scheme instead of a high order non-symplectic scheme, to avoid error accumulation after many iterations.
Integration of density has not been studied extensively (see below for more details).
Symplectic schemes are conservative but explicit, thus their numerical stability requires stability conditions, analogous to the Courant-Friedrichs-Lewy condition (see below).
In case the SPH convolution shall be practiced close to a boundary, i.e. closer than s · h, then the integral support is truncated. Indeed, when the convolution is affected by a boundary, the convolution shall be split in 2 integrals,
where B(r) is the compact support ball centered at r, with radius s · h, and Ω(r) denotes the part of the compact support inside the computational domain, Ω ∩ B(r). Hence, imposing boundary conditions in SPH is completely based on approximating the second integral on the right hand side. The same can be of course applied to the differential operators computation,
Several techniques has been introduced in the past to model boundaries in SPH.
The most straightforward boundary model is neglecting the integral,
such that just the bulk interactions are taken into account,
This is a popular approach when free-surface is considered in monophase simulations. [49]
The main benefit of this boundary condition is its obvious simplicity. However, several consistency issues shall be considered when this boundary technique is applied. [49] That's in fact a heavy limitation on its potential applications.
Probably the most popular methodology, or at least the most traditional one, to impose boundary conditions in SPH, is Fluid Extension technique. Such technique is based on populating the compact support across the boundary with so-called ghost particles, conveniently imposing their field values. [50]
Along this line, the integral neglect methodology can be considered as a particular case of fluid extensions, where the field, A, vanish outside the computational domain.
The main benefit of this methodology is the simplicity, provided that the boundary contribution is computed as part of the bulk interactions. Also, this methodology has been deeply analyzed in the literature. [51] [50] [52]
On the other hand, deploying ghost particles in the truncated domain is not a trivial task, such that modelling complex boundary shapes becomes cumbersome. The 2 most popular approaches to populate the empty domain with ghost particles are Mirrored-Particles [53] and Fixed-Particles. [50]
The newest Boundary technique is the Boundary Integral methodology. [54] In this methodology, the empty volume integral is replaced by a surface integral, and a renormalization:
with nj the normal of the generic j-th boundary element. The surface term can be also solved considering a semi-analytic expression. [54]
Another way to determine the density is based on the SPH smoothing operator itself. Therefore, the density is estimated from the particle distribution utilizing the SPH interpolation. To overcome undesired errors at the free surface through kernel truncation, the density formulation can again be integrated in time. [54]
The weakly compressible SPH in fluid dynamics is based on the discretization of the Navier–Stokes equations or Euler equations for compressible fluids. To close the system, an appropriate equation of state is utilized to link pressure and density . Generally, the so-called Cole equation [55] (sometimes mistakenly referred to as the "Tait equation") is used in SPH. It reads
where is the reference density and the speed of sound. For water, is commonly used. The background pressure is added to avoid negative pressure values.
Real nearly incompressible fluids such as water are characterized by very high speeds of sound of the order . Hence, pressure information travels fast compared to the actual bulk flow, which leads to very small Mach numbers . The momentum equation leads to the following relation:
where is the density change and the velocity vector. In practice a value of c smaller than the real one is adopted to avoid time steps too small in the time integration scheme. Generally a numerical speed of sound is adopted such that density variation smaller than 1% are allowed. This is the so-called weak-compressibility assumption. This corresponds to a Mach number smaller than 0.1, which implies:
where the maximum velocity needs to be estimated, for e.g. by Torricelli's law or an educated guess. Since only small density variations occur, a linear equation of state can be adopted: [56]
Usually the weakly-compressible schemes are affected by a high-frequency spurious noise on the pressure and density fields. [57] This phenomenon is caused by the nonlinear interaction of acoustic waves and by fact that the scheme is explicit in time and centered in space . [58]
Through the years, several techniques have been proposed to get rid of this problem. They can be classified in three different groups:
The schemes of the first group apply a filter directly on the density field to remove the spurious numerical noise. The most used filters are the MLS (moving least squares) and the Shepard filter [57] which can be applied at each time step or every n time steps. The more frequent is the use of the filtering procedure, the more regular density and pressure fields are obtained. On the other hand, this leads to an increase of the computational costs. In long time simulations, the use of the filtering procedure may lead to the disruption of the hydrostatic pressure component and to an inconsistency between the global volume of fluid and the density field. Further, it does not ensure the enforcement of the dynamic free-surface boundary condition.
A different way to smooth out the density and pressure field is to add a diffusive term inside the continuity equation (group 2) :
The first schemes that adopted such an approach were described in Ferrari [59] and in Molteni [56] where the diffusive term was modeled as a Laplacian of the density field. A similar approach was also used in Fatehi and Manzari . [60]
In Antuono et al. [61] a correction to the diffusive term of Molteni [56] was proposed to remove some inconsistencies close to the free-surface. In this case the adopted diffusive term is equivalent to a high-order differential operator on the density field. [62] The scheme is called δ-SPH and preserves all the conservation properties of the SPH without diffusion (e.g., linear and angular momenta, total energy, see [63] ) along with a smooth and regular representation of the density and pressure fields.
In the third group there are those SPH schemes which employ numerical fluxes obtained through Riemann solvers to model the particle interactions. [64] [65] [66]
For an SPH method based on Riemann solvers, an inter-particle Riemann problem is constructed along a unit vector pointing form particle to particle . In this Riemann problem the initial left and right states are on particles and , respectively. The and states are
The solution of the Riemann problem results in three waves emanating from the discontinuity. Two waves, which can be shock or rarefaction wave, traveling with the smallest or largest wave speed. The middle wave is always a contact discontinuity and separates two intermediate states, denoted by and . By assuming that the intermediate state satisfies and , a linearized Riemann solver for smooth flows or with only moderately strong shocks can be written as
where and are inter-particle averages. With the solution of the Riemann problem, i.e. and , the discretization of the SPH method is
where . This indicates that the inter-particle average velocity and pressure are simply replaced by the solution of the Riemann problem. By comparing both it can be seen that the intermediate velocity and pressure from the inter-particle averages amount to implicit dissipation, i.e. density regularization and numerical viscosity, respectively.
Since the above discretization is very dissipative a straightforward modification is to apply a limiter to decrease the implicit numerical dissipations introduced by limiting the intermediate pressure by [67]
where the limiter is defined as
Note that ensures that there is no dissipation when the fluid is under the action of an expansion wave, i.e. , and that the parameter , is used to modulate dissipation when the fluid is under the action of a compression wave, i.e. . Numerical experiments found the is generally effective. Also note that the dissipation introduced by the intermediate velocity is not limited.
This section is empty. You can help by adding to it. (October 2022) |
In general, the description of hydrodynamic flows require a convenient treatment of diffusive processes to model the viscosity in the Navier–Stokes equations. It needs special consideration because it involves the Laplacian differential operator. Since the direct computation does not provide satisfactory results, several approaches to model the diffusion have been proposed.
Introduced by Monaghan and Gingold [68] the artificial viscosity was used to deal with high Mach number fluid flows. It reads
Here, is controlling a volume viscosity while acts similar to the Neumann Richtmeyr artificial viscosity. The is defined by
where ηh is a small fraction of h (e.g. 0.01h) to prevent possible numerical infinities at close distances.
The artificial viscosity also has shown to improve the overall stability of general flow simulations. Therefore, it is applied to inviscid problems in the following form
It is possible to not only stabilize inviscid simulations but also to model the physical viscosity by this approach. To do so
is substituted in the equation above, where is the number of spartial dimensions of the model. This approach introduces the bulk viscosity .
For low Reynolds numbers the viscosity model by Morris [69] was proposed.
Often in astrophysics, one wishes to model self-gravity in addition to pure hydrodynamics. The particle-based nature of SPH makes it ideal to combine with a particle-based gravity solver, for instance tree gravity code, [70] particle mesh, or particle-particle particle-mesh.
To discretize the governing equations of solid dynamics, a correction matrix [71] [72] is first introduced to reproducing rigid-body rotation as
(1) |
where
stands for the gradient of the kernel function evaluated at the initial reference configuration. Note that subscripts and are used to denote solid particles, and smoothing length is identical to that in the discretization of fluid equations.
Using the initial configuration as the reference, the solid density is directly evaluated as
(2) |
where is the Jacobian determinant of deformation tensor .
We can now discretize the momentum equation in the following form
(3) |
where inter-particle averaged first Piola-Kirchhoff stress is defined as
(4) |
Also and correspond to the fluid pressure and viscous forces acting on the solid particle , respectively.
In fluid-structure coupling, the surrounding solid structure is behaving as a moving boundary for fluid, and the no-slip boundary condition is imposed at the fluid-structure interface. The interaction forces and acting on a fluid particle , due to the presence of the neighboring solid particle , can be obtained as [73]
(5) |
and
(6) |
Here, the imaginary pressure and velocity are defined by
(7) |
where denotes the surface normal direction of the solid structure, and the imaginary particle density is calculated through the equation of state.
Accordingly, the interaction forces and acting on a solid particle are given by
(8) |
and
(9) |
The anti-symmetric property of the derivative of the kernel function will ensure the momentum conservation for each pair of interacting particles and .
The discrete element method, used for simulating granular materials, is related to SPH.
This section is empty. You can help by adding to it. (July 2018) |
Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:
In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.
In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. The Froude number is based on the speed–length ratio which he defined as:
In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.
Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.
Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.
In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.
The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.
Conservation form or Eulerian form refers to an arrangement of an equation or system of equations, usually representing a hyperbolic system, that emphasizes that a property represented is conserved, i.e. a type of continuity equation. The term is usually used in the context of continuum mechanics.
The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.
Volume viscosity is a material property relevant for characterizing fluid flow. Common symbols are or . It has dimensions, and the corresponding SI unit is the pascal-second (Pa·s).
In theoretical physics, the Madelung equations, or the equations of quantum hydrodynamics, are Erwin Madelung's equivalent alternative formulation of the Schrödinger equation, written in terms of hydrodynamical variables, similar to the Navier–Stokes equations of fluid dynamics. The derivation of the Madelung equations is similar to the de Broglie–Bohm formulation, which represents the Schrödinger equation as a quantum Hamilton–Jacobi equation.
The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.
In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.
In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.
The multiphase particle-in-cell method (MP-PIC) is a numerical method for modeling particle-fluid and particle-particle interactions in a computational fluid dynamics (CFD) calculation. The MP-PIC method achieves greater stability than its particle-in-cell predecessor by simultaneously treating the solid particles as computational particles and as a continuum. In the MP-PIC approach, the particle properties are mapped from the Lagrangian coordinates to an Eulerian grid through the use of interpolation functions. After evaluation of the continuum derivative terms, the particle properties are mapped back to the individual particles. This method has proven to be stable in dense particle flows, computationally efficient, and physically accurate. This has allowed the MP-PIC method to be used as particle-flow solver for the simulation of industrial-scale chemical processes involving particle-fluid flows.
Plasticity theory for rocks is concerned with the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture while plasticity is identified with ductile materials. In field scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last word.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)