Peridynamics

Last updated
Computer model of the necking of an aluminum rod under tension. Colors indicate temperature increase due to plastic heating. Calculation performed with the Emu computer code using peridynamic state-based framework. Peridynamics-neck.jpg
Computer model of the necking of an aluminum rod under tension. Colors indicate temperature increase due to plastic heating. Calculation performed with the Emu computer code using peridynamic state-based framework.

Peridynamics is a non-local formulation of continuum mechanics that is oriented toward deformations with discontinuities, especially fractures. Originally, bond-based peridynamic has been introduced, [1] wherein, internal interaction forces between a material point and all the other ones with which it can interact, are modeled as a central forces field. [2] This type of force fields can be imagined as a mesh of bonds connecting each point of the body with every other interacting point within a certain distance which depends on material property, called peridynamic horizon. Later, to overcome bond-based framework limitations for the material Poisson’s ratio [3] [4] ( for plane stress and for plane strain in two-dimesional configurations; for three-dimensional ones), state-base peridynamics, has been formulated. [5] Its characteristic feature is that the force exchanged between a point and another one is influenced by the deformation state of all other bonds relative to its interaction zone. [1]

Contents

The characteristic feature of peridynamics, which makes it different from classical local mechanics, is the presence of finite-range bond between any two points of the material body: it is a feature that approaches such formulations to discrete meso-scale theories of matter. [1]

Etymology

The term peridynamic, as an adjective, was proposed in the year 2000 and comes from the prefix peri, which means all around, near, or surrounding; and the root dyna, which means force or power. The term peridynamics, as a noun, is a shortened form of the phrase peridynamic model of solid mechanics. [1]

Purpose

A fracture is a mathematical singularity to which the classical equations of continuum mechanics cannot be applied directly. The peridynamic theory has been proposed with the purpose of mathematically models fractures formation and dynamic in elastic materials. [1] It is founded on integral equations, in contrast with classical continuum mechanics, which is based on partial differential equations. Since partial derivatives do not exist on crack surfaces [1] and other geometric singularities, the classical equations of continuum mechanics cannot be applied directly when such features are present in a deformation. The integral equations of the peridynamic theory hold true also on singularities and can be applied directly, because they do not require partial derivatives. The ability to apply the same equations directly at all points in a mathematical model of a deforming structure helps the peridynamic approach to avoid the need for the special techniques of fracture mechanics like xFEM. [6] For example, in peridynamics, there is no need for a separate crack growth law based on a stress intensity factor. [7]

Definition and basic terminology

(a) Kinematics of material body
O
t
{\displaystyle \Omega _{t}}
within peridynamic theory. (b) Representation of peridynamic horizon of
x
{\displaystyle {\bf {x}}}
. Kinematics of peridynamic theory.png
(a) Kinematics of material body within peridynamic theory. (b) Representation of peridynamic horizon of .

In the context of peridynamic theory, physical bodies are treated as constituted by a continuous points mesh which can exchange long-range mutual interaction forces, within a maximum and well established distance : the peridynamic horizon radius. This perspective approaches much more to molecular dynamics than macroscopic bodies, and as a consequence, is not based on the concept of stress tensor (which is a local concept) and drift toward the notion of pairwise force that a material point exchanges within its peridynamic horizon. With a Lagrangian point of view, suited for small displacements, the peridynamic horizon is considered fixed in the reference configuration and, then, deforms with the body. [3] Consider a material body represented by , where can be either 1, 2 or 3. The body has a positive density . Its reference configuration at the initial time is denoted by . It is important to note that the reference configuration can either be the stress-free configuration or a specific configuration of the body chosen as a reference. In the context of peridynamics, every point in interacts with all the points within a certain neighborhood defined by , where and represents a suitable distance function on . This neighborhood is often referred to as in the literature. It is commonly known as the horizon [7] [8] or the family of . [3] [9]

The kinematics of is described in terms of its displacement from the reference position, denoted as . Consequently, the position of at a specific time is determined by . Furthermore, for each pair of interacting points, the change in the length of the bond relative to the initial configuration is tracked over time through the relative strain , which can be expressed as:

where denotes the Euclidean norm [3] and .

The interaction between any and is referred to as a bond. These pairwise bonds have varying lengths over time in response to the force per unit volume squared, denoted as [3]

.

This force is commonly known as the pairwise force function or peridynamic kernel , and it encompasses all the constitutive (material-dependent) properties. It describes how the internal forces depend on the deformation. It's worth noting that the dependence of on has been omitted here for the sake of simplicity in notation. Additionally, an external forcing term, , is introduced, which results in the following equation of motion, representing the fundamental equation of peridynamics: [3]

where the integral term is the sum of all of the internal and external per-unit-volume forces acting on :

The vector valued function is the force density that exerts on . This force density depends on the relative displacement and relative position vectors between and . The dimension of is . [3]

Bond-based peridynamics

In this formulation of peridynamics, the kernel is determined by the nature of internal forces and physical constraints that governs the interaction between only two material points. For the sake of brevity, the following quantities are defined and so that [1]

Actio et reactio principle

For any and belonging to the neighborhood , the following relationship holds: . This expression reflects the principle of action and reaction, commonly known as Newton's Third Law. It guarantees the conservation of linear momentum in a system composed of mutually interacting particles. [1]

Angular momentum conservation

For any and belonging to the neighborhood , the following condition holds: . This condition arises from considering the relative deformed ray-vector connecting and as . The condition is satisfied if and only if the pairwise force density vector has the same direction as the relative deformed ray-vector. In other words, for all and , where is a scalar-valued function. [1]

Hyperelastic material

An hyperelastic material is a material with constitutive relation such that: [1]

or, equivalently, by Stokes' theorem

,

and, thus,

In the equation above is the scalar valued potential function in . [1] Due to the necessity of satisfying angular momentum conservation, the condition below on the scalar valued function follows [1]

where is a scalar valued function. Integrating both sides of the equation, the following condition on is obtained [1]

,   

for a scalar valued function. The elastic nature of is evident: the interaction force depends only on the initial relative position between points and and the modulus of their relative position, , in the deformed configuration at time . Applying the isotropy hypothesis, the dependence on vector can be substituted with a dependence on its modulus , [1]

Bond forces can, thus, be considered as modeling a spring net that connects each point  pairwise with .

Linear elastic material

If , the peridynamic kernel can be linearised around : [1]

then, a second-order micro-modulus tensor can be defined as

where and is the identity tensor. Following application of linear momentum balance, elasticity and isotropy condition, the micro-modulus tensor can be expressed in this form [1]

Therefore for a linearised hyperelastic material, its peridynamic kernel holds the following structure [1]

Expressions for the peridynamic kernel

The peridynamic kernel is a versatile function that characterizes the constitutive behavior of materials within the framework of peridynamic theory. One commonly employed formulation of the kernel is used to describe a class of materials known as prototype micro-elastic brittle (PMB) materials. In the case of isotropic PMB materials, the pairwise force is assumed to be linearly proportional to the finite stretch [7] experienced by the material, defined as

,

so that

where

and where the scalar function is defined as follow [7]

with

The constant is referred to as the micro-modulus constant, and the function serves to indicate whether, at a given time , the bond stretch associated with the pair has surpassed the critical value . If the critical value is exceeded, the bond is considered broken, and a pairwise force of zero is assigned for all . [1]

After a comparison between the strain energy density value obtained under isotropic extension respectively employing peridynamics and classical continuum theory framework, the physical coherent value of micro-modulus can be found [7]

where is the material bulk modulus.

Following the same approach [10] the micro-modulus constant can be extended to , where is now a micro-modulus function. This function provides a more detailed description of how the intensity of pairwise forces is distributed over the peridynamic horizon . Intuitively, the intensity of forces decreases as the distance between and increases, but the specific manner in which this decrease occurs can vary.

The micro-modulus function is expressed as [11]

where the constant is obtained by comparing peridynamic strain density with the classical mechanical theories; [12] is a function defined on with the following properties (given the restrictions of momentum conservation and isotropy) [11]

where is the Dirac Delta function.

Pictorial representation of some widely used micro-modulus function
c
(
x
,
d
)
=
c
(
0
,
d
)
k
(
x
,
d
)
{\displaystyle c({\bf {\xi }},\delta )=c({\bf {{0},\delta )k({\bf {\xi }},\delta )}}}
. Widely employed Peridynamics Micromodulus.png
Pictorial representation of some widely used micro-modulus function .

Cylindrical micro-modulus

The simplest expression for the micro-modulus function is [11]

,

where : is the indicator function of the subset , defined as

Triangular micro-modulus

It is characterized by to a be a linear function [13]

Normal micro-modulus

If one wants to reflects the fact that most common discrete physical systems are characterized by a Maxwell-Boltzmann distribution, in order to include this behavior in peridynamics, the following expression for can be utilized [14]

Quartic micro-modulus

In the literature one can find also the following expression for the function [11]

Overall, depending on the specific material property to be modeled, there exists a wide range of expressions for the micro-modulus and, in general, for the peridynamic kernel. The above list is, thus, not exhaustive. [11]

Damage

Representation of peridynamic pairwise force function
f
(
x
,
e
)
{\displaystyle {\bf {f}}(\xi ,\eta )}
with bond-breaking function
m
(
s
,
t
)
{\displaystyle \mu (s,t)}
; after the critical stretch value
s
0
{\displaystyle s_{0}}
is exceeded, the bond is considered broken and no force exists between the two involved material points. Inner-force.png
Representation of peridynamic pairwise force function with bond-breaking function ; after the critical stretch value is exceeded, the bond is considered broken and no force exists between the two involved material points.

Damage is incorporated in the pairwise force function by allowing bonds to break when their elongation exceeds some prescribed value. After a bond breaks, it no longer sustains any force, and the endpoints are effectively disconnected from each other. When a bond breaks, the force it was carrying is redistributed to other bonds that have not yet broken. This increased load makes it more likely that these other bonds will break. The process of bond breakage and load redistribution, leading to further breakage, is how cracks grow in the peridynamic model. [7]

Analytically, the bond braking is specified inside the expression of peridynamic kernel, by the function [7]

If the graph of versus bond stretching is plotted, the action of bond braking function in fracture formation is clear. However not only abrupt fracture can be modeled in peridynamic framework and more general expression for can be employed. [7]

State-based peridynamics

The theory described above assumes that each peridynamic bond responds independently of all the others. This is an oversimplification for most materials and leads to restrictions on the types of materials that can be modeled. In particular, this assumption implies that any isotropic linear elastic solid is restricted to a Poisson ratio of 1/4. [3]

To address this lack of generality, the idea of peridynamic states was introduced. This allows the force density in each bond to depend on the stretches in all the bonds connected to its endpoints, in addition to its own stretch. For example, the force in a bond could depend on the net volume changes at the endpoints. The effect of this volume change, relative to the effect of the bond stretch, determines the Poisson ratio. With peridynamic states, any material that can be modeled within the standard theory of continuum mechanics can be modeled as a peridynamic material, while retaining the advantages of the peridynamic theory for fracture. [5]

Mathematically the equation of the internal and external force term

used in the bond-based formulations is substituted by [5]

where is the force vector state field.

A general m-order state is a mathematical object similar to a tensor, with the exception that it is [5]

Vector states are states of order equal to 2. For so called simple material, is defined as

where is a Riemann-integrable function on , and is called deformation vector state field and is defined by the following relation [5]

thus is the image of the bond under the deformation

such that

which means that two distinct particles never occupy the same point as the deformation progresses. [5]

It can be proved [5] that balance of linear momentum follow from the definition of , while, if the constitutive relation is such that

the force vector state field satisfy balance of angular momentum. [5]

Applications

A ductile fracture of an Al-Mg-Si alloy Al tensile test.jpg
A ductile fracture of an Al-Mg-Si alloy

The growing interest in peridynamics [6] come from its capability to fill the gap between atomistic theories of matter and classical local continuum mechanics. It is applied effectively to micro-scale phenomena, such as crack formation and propagation, [15] [16] [17] wave dispersion, [18] [19] intra-granular fracture. [20] These phenomena can be described by appropriately adjustment of the peridynamic horizon radius, which is directly linked to the extent of non-local interactions between points within the material. [21]

In addition to the aforementioned research fields, peridynamics' non-local approach to discontinuities has found applications in various other areas. In geo-mechanics, it has been employed to study water-induced soil cracks, [22] [23] geo-material failure, [24] rocks fragmentation, [25] [26] and so on. In biology, peridynamics has been used to model long-range interactions in living tissues, [27] cellular ruptures, cracking of bio-membranes, [28] and more. [6] Furthermore, peridynamics has been extended to thermal diffusion theory, [29] [30] enabling the modeling of heat conduction in materials with discontinuities, defects, inhomogeneities, and cracks. It has also been applied to study advection-diffusion phenomena in multi-phase fluids [31] and to construct models for transient advection-diffusion problems. [32] With its versatility, peridynamics has been used in various multi-physics analyses, including micro-structural analysis, [33] fatigue and heat conduction in composite materials, [34] [35] galvanic corrosion in metals, [36] electricity-induced cracks in dielectric materials and more. [6]

See also

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

<span class="mw-page-title-main">Wave equation</span> Differential equation important in physics

The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves or electromagnetic waves. It arises in fields like acoustics, electromagnetism, and fluid dynamics.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

A directional derivative is a concept in multivariable calculus that measures the rate at which a function changes in a particular direction at a given point.

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.

In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.

In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function ss2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential

<span class="mw-page-title-main">Wigner's theorem</span> Theorem in the mathematical formulation of quantum mechanics

Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT transformations are represented on the Hilbert space of states.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

In mathematics, in the field of algebraic geometry, the period mapping relates families of Kähler manifolds to families of Hodge structures.

In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, and is thus expressed in terms of energy per unit area. Various energy balances can be constructed relating the energy released during fracture to the energy of the resulting new surface, as well as other dissipative processes such as plasticity and heat generation. The energy release rate is central to the field of fracture mechanics when solving problems and estimating material properties related to fracture and fatigue.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

In mathematical physics, the Whitham equation is a non-local model for non-linear dispersive waves.

Triple-deck theory is a theory that describes a three-layered boundary-layer structure when sufficiently large disturbances are present in the boundary layer. This theory is able to successfully explain the phenomenon of boundary layer separation, but it has found applications in many other flow setups as well, including the scaling of the lower-branch instability (T-S) of the Blasius flow, boundary layers in swirling flows, etc. James Lighthill, Lev Landau and others were the first to realize that to explain boundary layer separation, different scales other than the classical boundary-layer scales need to be introduced. These scales were first introduced independently by James Lighthill and E. A. Müller in 1953. The triple-layer structure itself was independently discovered by Keith Stewartson (1969) and V. Y. Neiland (1969) and by A. F. Messiter (1970). Stewartson and Messiter considered the separated flow near the trailing edge of a flat plate, whereas Neiland studied the case of a shock impinging on a boundary layer.

In solid mechanics, the linear stability analysis of an elastic solution is studied using the method of incremental deformations superposed on finite deformations. The method of incremental deformation can be used to solve static, quasi-static and time-dependent problems. The governing equations of the motion are ones of the classical mechanics, such as the conservation of mass and the balance of linear and angular momentum, which provide the equilibrium configuration of the material. The main corresponding mathematical framework is described in the main Raymond Ogden's book Non-linear elastic deformations and in Biot's book Mechanics of incremental deformations, which is a collection of his main papers.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Silling, S.A. (January 2000). "Reformulation of elasticity theory for discontinuities and long-range forces". Journal of the Mechanics and Physics of Solids. 48 (1): 175–209. Bibcode:2000JMPSo..48..175S. doi:10.1016/S0022-5096(99)00029-0. S2CID   122055539.
  2. Dimola, Nunzio; Coclite, Alessandro; Fanizza, Giuseppe; Politi, Tiziano (2022-10-23). "Bond-based peridynamics, a survey prospecting nonlocal theories of fluid-dynamics". Advances in Continuous and Discrete Models. 2022 (1). arXiv: 2207.06194 . doi: 10.1186/s13662-022-03732-6 . ISSN   2731-4235.
  3. 1 2 3 4 5 6 7 8 Madenci, Erdogan; Oterkus, Erkan (2014). Peridynamic theory and its applications. New York, NY: Springer. pp. 19–43. ISBN   978-1-4614-8464-6.
  4. Macek, Richard W.; Silling, Stewart A. (November 2007). "Peridynamics via finite element analysis". Finite Elements in Analysis and Design. 43 (15): 1169–1178. doi:10.1016/j.finel.2007.08.012. ISSN   0168-874X. OSTI   1725746.
  5. 1 2 3 4 5 6 7 8 Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E. (2007-08-08). "Peridynamic States and Constitutive Modeling". Journal of Elasticity. 88 (2): 151–184. doi:10.1007/s10659-007-9125-1. ISSN   0374-3535. S2CID   30571789.
  6. 1 2 3 4 Javili, Ali; Morasata, Rico; Oterkus, Erkan; Oterkus, Selda (November 2019). "Peridynamics review". Mathematics and Mechanics of Solids. 24 (11): 3714–3739. doi:10.1177/1081286518803411. hdl: 11693/53217 . ISSN   1081-2865. S2CID   162176799.
  7. 1 2 3 4 5 6 7 8 Silling, S.A.; Askari, E. (June 2005). "A meshfree method based on the peridynamic model of solid mechanics". Computers & Structures. 83 (17–18): 1526–1535. doi:10.1016/j.compstruc.2004.11.026.
  8. Ren, Huilong; Zhuang, Xiaoying; Cai, Yongchang; Rabczuk, Timon (2016-12-21). "Dual-horizon peridynamics: Dual-horizon peridynamics". International Journal for Numerical Methods in Engineering. 108 (12): 1451–1476. arXiv: 1506.05146 . doi:10.1002/nme.5257. S2CID   117201049.
  9. Chen, Ziguang; Bakenhus, Drew; Bobaru, Florin (November 2016). "A constructive peridynamic kernel for elasticity". Computer Methods in Applied Mechanics and Engineering. 311: 356–373. Bibcode:2016CMAME.311..356C. doi: 10.1016/j.cma.2016.08.012 .
  10. Bobaru, Florin; Duangpanya, Monchai (September 2010). "The peridynamic formulation for transient heat conduction". International Journal of Heat and Mass Transfer. 53 (19–20): 4047–4059. doi:10.1016/j.ijheatmasstransfer.2010.05.024.
  11. 1 2 3 4 5 Huang, Dan; Lu, Guangda; Wang, Chongwen; Qiao, Pizhong (June 2015). "An extended peridynamic approach for deformation and fracture analysis". Engineering Fracture Mechanics. 141: 196–211. doi:10.1016/j.engfracmech.2015.04.036.
  12. Chen, Zhiyong; Woody Ju, J.; Su, Guoshao; Huang, Xiaohua; Li, Shuang; Zhai, Lianjun (July 2019). "Influence of micro-modulus functions on peridynamics simulation of crack propagation and branching in brittle materials". Engineering Fracture Mechanics. 216: 106498. doi:10.1016/j.engfracmech.2019.106498. S2CID   197621064.
  13. Ha, Youn Doh; Bobaru, Florin (March 2010). "Studies of dynamic crack propagation and crack branching with peridynamics". International Journal of Fracture. 162 (1–2): 229–244. doi:10.1007/s10704-010-9442-4. ISSN   0376-9429. S2CID   8462707.
  14. Kilic, Bahattin (2008). "Peridynamic Theory for Progressive Failure Prediction in Homogeneous and Heterogeneous Materials".{{cite journal}}: Cite journal requires |journal= (help)
  15. Agwai, Abigail; Guven, Ibrahim; Madenci, Erdogan (September 2011). "Predicting crack propagation with peridynamics: a comparative study". International Journal of Fracture. 171 (1): 65–78. doi:10.1007/s10704-011-9628-4. ISSN   0376-9429. S2CID   136475045.
  16. Lipton, Robert (October 2014). "Dynamic Brittle Fracture as a Small Horizon Limit of Peridynamics". Journal of Elasticity. 117 (1): 21–50. arXiv: 1305.4531 . doi: 10.1007/s10659-013-9463-0 . ISSN   0374-3535. S2CID   254462294.
  17. Silling, S. A.; Weckner, O.; Askari, E.; Bobaru, F. (March 2010). "Crack nucleation in a peridynamic solid". International Journal of Fracture. 162 (1–2): 219–227. doi:10.1007/s10704-010-9447-z. ISSN   0376-9429. S2CID   209225.
  18. Coclite, G. M.; Dipierro, S.; Fanizza, G.; Maddalena, F.; Romano, M.; Valdinoci, E. (March 2023). "Qualitative Aspects in Nonlocal Dynamics". Journal of Peridynamics and Nonlocal Modeling. 5 (1): 1–19. arXiv: 2106.13596 . doi:10.1007/s42102-021-00064-z. ISSN   2522-896X. S2CID   235652235.
  19. Seleson, Pablo; Parks, Michael L.; Gunzburger, Max; Lehoucq, Richard B. (January 2009). "Peridynamics as an Upscaling of Molecular Dynamics". Multiscale Modeling & Simulation. 8 (1): 204–227. doi:10.1137/09074807X. ISSN   1540-3459. OSTI   1678881.
  20. Behzadinasab, Masoud; Foster, John T. (April 2020). "A semi-Lagrangian constitutive correspondence framework for peridynamics". Journal of the Mechanics and Physics of Solids. 137: 103862. Bibcode:2020JMPSo.13703862B. doi: 10.1016/j.jmps.2019.103862 . S2CID   212784700.
  21. Askari, E; Bobaru, F; Lehoucq, R B; Parks, M L; Silling, S A; Weckner, O (2008-07-01). "Peridynamics for multiscale materials modeling". Journal of Physics: Conference Series. 125 (1): 012078. Bibcode:2008JPhCS.125a2078A. doi: 10.1088/1742-6596/125/1/012078 . ISSN   1742-6596. S2CID   250694017.
  22. Ni, Tao; Pesavento, Francesco; Zaccariotto, Mirco; Galvanetto, Ugo; Zhu, Qi-Zhi; Schrefler, Bernhard A. (July 2020). "Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media". Computer Methods in Applied Mechanics and Engineering. 366: 113101. arXiv: 2307.10929 . Bibcode:2020CMAME.366k3101N. doi:10.1016/j.cma.2020.113101. S2CID   219519506.
  23. Zhou, Xiao-Ping; Wang, Yun-Teng; Shou, Yun-Dong (August 2020). "Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks". International Journal of Rock Mechanics and Mining Sciences. 132: 104383. Bibcode:2020IJRMM.13204383Z. doi:10.1016/j.ijrmms.2020.104383. S2CID   225382857.
  24. Song, Xiaoyu; Khalili, Nasser (January 2019). "A peridynamics model for strain localization analysis of geomaterials". International Journal for Numerical and Analytical Methods in Geomechanics. 43 (1): 77–96. Bibcode:2019IJNAM..43...77S. doi: 10.1002/nag.2854 . ISSN   0363-9061. S2CID   125649306.
  25. Panchadhara, Rohan; Gordon, Peter A.; Parks, Michael L. (March 2017). "Modeling propellant-based stimulation of a borehole with peridynamics". International Journal of Rock Mechanics and Mining Sciences. 93: 330–343. Bibcode:2017IJRMM..93..330P. doi: 10.1016/j.ijrmms.2017.02.006 .
  26. Zhou, Xiao-Ping; Wang, Yun-Teng (January 2021). "State-of-the-Art Review on the Progressive Failure Characteristics of Geomaterials in Peridynamic Theory". Journal of Engineering Mechanics. 147 (1). doi:10.1061/(ASCE)EM.1943-7889.0001876. ISSN   0733-9399. S2CID   228906748.
  27. Lejeune, Emma; Linder, Christian (August 2017). "Modeling tumor growth with peridynamics". Biomechanics and Modeling in Mechanobiology. 16 (4): 1141–1157. doi:10.1007/s10237-017-0876-8. ISSN   1617-7959. PMID   28124191. S2CID   254169636.
  28. Taylor, Michael; Gözen, Irep; Patel, Samir; Jesorka, Aldo; Bertoldi, Katia (2016-11-09). van Veen, Hendrik W. (ed.). "Peridynamic Modeling of Ruptures in Biomembranes". PLOS ONE. 11 (11): e0165947. Bibcode:2016PLoSO..1165947T. doi: 10.1371/journal.pone.0165947 . ISSN   1932-6203. PMC   5102442 . PMID   27829001.
  29. Bobaru, Florin; Duangpanya, Monchai (April 2012). "A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities". Journal of Computational Physics. 231 (7): 2764–2785. Bibcode:2012JCoPh.231.2764B. doi:10.1016/j.jcp.2011.12.017. S2CID   6929467.
  30. Oterkus, Selda; Madenci, Erdogan; Agwai, Abigail (May 2014). "Peridynamic thermal diffusion". Journal of Computational Physics. 265: 71–96. Bibcode:2014JCoPh.265...71O. doi:10.1016/j.jcp.2014.01.027. S2CID   22835224.
  31. Foster, John (2019). "Nonlocal and fractional order methods for near-wall turbulence, large-eddy simulation, and fluid-structure interaction". Technical Report, University of Texas at Austin Austin United States.
  32. Zhao, Jiangming; Chen, Ziguang; Mehrmashhadi, Javad; Bobaru, Florin (November 2018). "Construction of a peridynamic model for transient advection-diffusion problems". International Journal of Heat and Mass Transfer. 126: 1253–1266. doi:10.1016/j.ijheatmasstransfer.2018.06.075. S2CID   125321481.
  33. Buryachenko, Valeriy A. (October 2020). "Generalized effective fields method in peridynamic micromechanics of random structure composites". International Journal of Solids and Structures. 202: 765–786. doi: 10.1016/j.ijsolstr.2020.06.022 . S2CID   225577923.
  34. Hu, Y.L.; Madenci, E. (January 2017). "Peridynamics for fatigue life and residual strength prediction of composite laminates". Composite Structures. 160: 169–184. doi:10.1016/j.compstruct.2016.10.010.
  35. Oterkus, Erkan; Madenci, Erdogan (2012-03-28). "Peridynamic analysis of fiber-reinforced composite materials". Journal of Mechanics of Materials and Structures. 7 (1): 45–84. doi: 10.2140/jomms.2012.7.45 . ISSN   1559-3959.
  36. Zhao, Jiangming; Jafarzadeh, Siavash; Rahmani, Mohammad; Chen, Ziguang; Kim, Yong-Rak; Bobaru, Florin (September 2021). "A peridynamic model for galvanic corrosion and fracture". Electrochimica Acta. 391: 138968. doi: 10.1016/j.electacta.2021.138968 .

Further reading