In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations. They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and plasma physics. Indeed, the solutions of such problems may involve strong gradients (and even discontinuities) so that classical finite element methods fail, while finite volume methods are restricted to low order approximations.
Discontinuous Galerkin methods were first proposed and analyzed in the early 1970s as a technique to numerically solve partial differential equations. In 1973 Reed and Hill introduced a DG method to solve the hyperbolic neutron transport equation.
The origin of the DG method for elliptic problems cannot be traced back to a single publication as features such as jump penalization in the modern sense were developed gradually. However, among the early influential contributors were Babuška, J.-L. Lions, Joachim Nitsche and Miloš Zlámal. DG methods for elliptic problems were already developed in a paper by Garth Baker in the setting of 4th order equations in 1977. A more complete account of the historical development and an introduction to DG methods for elliptic problems is given in a publication by Arnold, Brezzi, Cockburn and Marini. A number of research directions and challenges on DG methods are collected in the proceedings volume edited by Cockburn, Karniadakis and Shu.
Much like the continuous Galerkin (CG) method, the discontinuous Galerkin (DG) method is a finite element method formulated relative to a weak formulation of a particular model system. Unlike traditional CG methods that are conforming, the DG method works over a trial space of functions that are only piecewise continuous, and thus often comprise more inclusive function spaces than the finite-dimensional inner product subspaces utilized in conforming methods.
As an example, consider the continuity equation for a scalar unknown in a spatial domain without "sources" or "sinks" :
where is the flux of .
Now consider the finite-dimensional space of discontinuous piecewise polynomial functions over the spatial domain restricted to a discrete triangulation , written as
for the space of polynomials with degrees less than or equal to over element indexed by . Then for finite element shape functions the solution is represented by
Then similarly choosing a test function
multiplying the continuity equation by and integrating by parts in space, the semidiscrete DG formulation becomes:
A scalar hyperbolic conservation law is of the form
where one tries to solve for the unknown scalar function , and the functions are typically given.
The -space will be discretized as
Furthermore, we need the following definitions
We derive the basis representation for the function space of our solution . The function space is defined as
where denotes the restriction of onto the interval , and denotes the space of polynomials of maximal degree . The index should show the relation to an underlying discretization given by . Note here that is not uniquely defined at the intersection points .
At first we make use of a specific polynomial basis on the interval , the Legendre polynomials , i.e.,
Note especially the orthogonality relations
Transformation onto the interval , and normalization is achieved by functions
which fulfill the orthonormality relation
Transformation onto an interval is given by
which fulfill
For -normalization we define , and for -normalization we define , s.t.
Finally, we can define the basis representation of our solutions
Note here, that is not defined at the interface positions.
Besides, prism bases are employed for planar-like structures, and are capable for 2-D/3-D hybridation.
The conservation law is transformed into its weak form by multiplying with test functions, and integration over test intervals
By using partial integration one is left with
The fluxes at the interfaces are approximated by numerical fluxes with
where denotes the left- and right-hand sided limits. Finally, the DG-Scheme can be written as
A scalar elliptic equation is of the form
This equation is the steady-state heat equation, where is the temperature. Space discretization is the same as above. We recall that the interval is partitioned into intervals of length .
We introduce jump and average of functions at the node :
The interior penalty discontinuous Galerkin (IPDG) method is: find satisfying
where the bilinear forms and are
and
The linear forms and are
and
The penalty parameter is a positive constant. Increasing its value will reduce the jumps in the discontinuous solution. The term is chosen to be equal to for the symmetric interior penalty Galerkin method; it is equal to for the non-symmetric interior penalty Galerkin method.
The direct discontinuous Galerkin (DDG) method is a new discontinuous Galerkin method for solving diffusion problems. In 2009, Liu and Yan first proposed the DDG method for solving diffusion equations. [1] [2] The advantages of this method compared with Discontinuous Galerkin method is that the direct discontinuous Galerkin method derives the numerical format by directly taking the numerical flux of the function and the first derivative term without introducing intermediate variables. We still can get a reasonable numerical results by using this method, and the derivation process is more simple, the amount of calculation is greatly reduced.
The direct discontinuous finite element method is a branch of the Discontinuous Galerkin methods. It mainly includes transforming the problem into variational form, regional unit splitting, constructing basis functions, forming and solving discontinuous finite element equations, and convergence and error analysis.
For example, consider a nonlinear diffusion equation, which is one-dimensional:
Firstly, define , and . Therefore we have done the space discretization of . Also, define .
We want to find an approximation to such that , ,
, is the polynomials space in with degree at most .
Flux: .
: the exact solution of the equation.
Multiply the equation with a smooth function so that we obtain the following equations:
,
Here is arbitrary, the exact solution of the equation is replaced by the approximate solution , that is to say, the numerical solution we need is obtained by solving the differential equations.
Choosing a proper numerical flux is critical for the accuracy of DDG method.
The numerical flux needs to satisfy the following conditions:
♦ It is consistent with
♦ The numerical flux is conservative in the single value on .
♦ It has the -stability;
♦ It can improve the accuracy of the method.
Thus, a general scheme for numerical flux is given:
In this flux, is the maximum order of polynomials in two neighboring computing units. is the jump of a function. Note that in non-uniform grids, should be and in uniform grids.
Denote that the error between the exact solution and the numerical solution is .
We measure the error with the following norm:
and we have ,
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.
In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.
Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. The idea is to write the solution of the differential equation as a sum of certain "basis functions" and then to choose the coefficients in the sum in order to satisfy the differential equation as well as possible.
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.
Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.
In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.
In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix is a matrix that represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation.
In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point, in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals.
In probability theory, Kolmogorov equations, including Kolmogorov forward equations and Kolmogorov backward equations, characterize continuous-time Markov processes. In particular, they describe how the probability that a continuous-time Markov process is in a certain state changes over time.
Curvilinear coordinates can be formulated in tensor calculus, with important applications in physics and engineering, particularly for describing transportation of physical quantities and deformation of matter in fluid mechanics and continuum mechanics.
In numerical mathematics, the gradient discretisation method (GDM) is a framework which contains classical and recent numerical schemes for diffusion problems of various kinds: linear or non-linear, steady-state or time-dependent. The schemes may be conforming or non-conforming, and may rely on very general polygonal or polyhedral meshes.
In astrophysics, the Chandrasekhar virial equations are a hierarchy of moment equations of the Euler equations, developed by the Indian American astrophysicist Subrahmanyan Chandrasekhar, and the physicist Enrico Fermi and Norman R. Lebovitz.
The variational multiscale method (VMS) is a technique used for deriving models and numerical methods for multiscale phenomena. The VMS framework has been mainly applied to design stabilized finite element methods in which stability of the standard Galerkin method is not ensured both in terms of singular perturbation and of compatibility conditions with the finite element spaces.
The streamline upwind Petrov–Galerkin pressure-stabilizing Petrov–Galerkin formulation for incompressible Navier–Stokes equations can be used for finite element computations of high Reynolds number incompressible flow using equal order of finite element space by introducing additional stabilization terms in the Navier–Stokes Galerkin formulation.