Moving particle semi-implicit method

Last updated

The moving particle semi-implicit (MPS) method is a computational method for the simulation of incompressible free surface flows. It is a macroscopic, deterministic particle method (Lagrangian mesh-free method) developed by Koshizuka and Oka (1996).

Contents

Method

The MPS method is used to solve the Navier-Stokes equations in a Lagrangian framework. A fractional step method is applied which consists of splitting each time step in two steps of prediction and correction. The fluid is represented with particles, and the motion of each particle is calculated based on the interactions with the neighboring particles by means of a kernel function. [1] [2] [3] The MPS method is similar to the SPH (smoothed-particle hydrodynamics) method (Gingold and Monaghan, 1977; Lucy, 1977) in that both methods provide approximations to the strong form of the partial differential equations (PDEs) on the basis of integral interpolants. However, the MPS method applies simplified differential operator models solely based on a local weighted averaging process without taking the gradient of a kernel function. In addition, the solution process of MPS method differs to that of the original SPH method as the solutions to the PDEs are obtained through a semi-implicit prediction-correction process rather than the fully explicit one in original SPH method.

Applications

Through the past years, the MPS method has been applied in a wide range of engineering applications including Nuclear Engineering (e.g. Koshizuka et al., 1999; Koshizuka and Oka, 2001; Xie et al., 2005), Coastal Engineering (e.g. Gotoh et al., 2005; Gotoh and Sakai, 2006), Environmental Hydraulics (e.g. Shakibaeina and Jin, 2009; Nabian and Farhadi, 2016), Ocean Engineering (Shibata and Koshizuka, 2007; Sueyoshi et al., 2008; Zuo et al. 2022), Structural Engineering (e.g. Chikazawa et al., 2001), Mechanical Engineering (e.g. Heo et al., 2002; Sun et al., 2009), Bioengineering (e.g. Tsubota et al., 2006) and Chemical Engineering (e.g. Sun et al., 2009; Xu and Jin, 2018).

Improvements

Improved versions of MPS method have been proposed for enhancement of numerical stability (e.g. Koshizuka et al., 1998; Zhang et al., 2005; Ataie-Ashtiani and Farhadi, 2006;Shakibaeina and Jin, 2009; Jandaghian and Shakibaeinia, 2020; Cheng et al. 2021), momentum conservation (e.g. Hamiltonian MPS by Suzuki et al., 2007; Corrected MPS by Khayyer and Gotoh, 2008; Enhanced MPS by Jandaghian and Shakibaeinia, 2020), mechanical energy conservation (e.g. Hamiltonian MPS by Suzuki et al., 2007), pressure calculation (e.g. Khayyer and Gotoh, 2009, Kondo and Koshizuka, 2010, Khayyer and Gotoh, 2010, Xu and Jin, 2019), and for simulation of multiphase and granular flows (Nabian and Farhadi 2016; Xu and Jin, 2021; Xu and Li, 2022).

Related Research Articles

A discrete element method (DEM), also called a distinct element method, is any of a family of numerical methods for computing the motion and effect of a large number of small particles. Though DEM is very closely related to molecular dynamics, the method is generally distinguished by its inclusion of rotational degrees-of-freedom as well as stateful contact, particle deformation and often complicated geometries. With advances in computing power and numerical algorithms for nearest neighbor sorting, it has become possible to numerically simulate millions of particles on a single processor. Today DEM is becoming widely accepted as an effective method of addressing engineering problems in granular and discontinuous materials, especially in granular flows, powder mechanics, ice and rock mechanics. DEM has been extended into the Extended Discrete Element Method taking heat transfer, chemical reaction and coupling to CFD and FEM into account.

<span class="mw-page-title-main">Computational fluid dynamics</span> Analysis and solving of problems that involve fluid flows

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

<span class="mw-page-title-main">Particle-in-cell</span> Mathematical technique used to solve a certain class of partial differential equations

In plasma physics, the particle-in-cell (PIC) method refers to a technique used to solve a certain class of partial differential equations. In this method, individual particles in a Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents are computed simultaneously on Eulerian (stationary) mesh points.

<span class="mw-page-title-main">Smoothed-particle hydrodynamics</span> Method of hydrodynamics simulation

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.

<span class="mw-page-title-main">Mesh generation</span> Subdivision of space into cells

Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI, depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine in areas that are important for the subsequent calculations.

<span class="mw-page-title-main">Lattice Boltzmann methods</span> Class of computational fluid dynamics methods

The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

<span class="mw-page-title-main">Multiphase flow</span> Simultaneous flow of materials with two or more thermodynamic phases

In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more thermodynamic phases. Virtually all processing technologies from cavitating pumps and turbines to paper-making and the construction of plastics involve some form of multiphase flow. It is also prevalent in many natural phenomena.

<span class="mw-page-title-main">Fluid–structure interaction</span>

Fluid–structure interaction (FSI) is the interaction of some movable or deformable structure with an internal or surrounding fluid flow. Fluid–structure interactions can be stable or oscillatory. In oscillatory interactions, the strain induced in the solid structure causes it to move such that the source of strain is reduced, and the structure returns to its former state only for the process to repeat.

<span class="mw-page-title-main">Meshfree methods</span> Methods in numerical analysis not requiring knowledge of neighboring points

In the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort. The absence of a mesh allows Lagrangian simulations, in which the nodes can move according to the velocity field.

Discontinuous deformation analysis (DDA) is a type of discrete element method (DEM) originally proposed by Shi in 1988. DDA is somewhat similar to the finite element method for solving stress-displacement problems, but accounts for the interaction of independent particles (blocks) along discontinuities in fractured and jointed rock masses. DDA is typically formulated as a work-energy method, and can be derived using the principle of minimum potential energy or by using Hamilton's principle. Once the equations of motion are discretized, a step-wise linear time marching scheme in the Newmark family is used for the solution of the equations of motion. The relation between adjacent blocks is governed by equations of contact interpenetration and accounts for friction. DDA adopts a stepwise approach to solve for the large displacements that accompany discontinuous movements between blocks. The blocks are said to be "simply deformable". Since the method accounts for the inertial forces of the blocks' mass, it can be used to solve the full dynamic problem of block motion.

The material point method (MPM) is a numerical technique used to simulate the behavior of solids, liquids, gases, and any other continuum material. Especially, it is a robust spatial discretization method for simulating multi-phase (solid-fluid-gas) interactions. In the MPM, a continuum body is described by a number of small Lagrangian elements referred to as 'material points'. These material points are surrounded by a background mesh/grid that is used to calculate terms such as the deformation gradient. Unlike other mesh-based methods like the finite element method, finite volume method or finite difference method, the MPM is not a mesh based method and is instead categorized as a meshless/meshfree or continuum-based particle method, examples of which are smoothed particle hydrodynamics and peridynamics. Despite the presence of a background mesh, the MPM does not encounter the drawbacks of mesh-based methods which makes it a promising and powerful tool in computational mechanics.

The CFD-DEM model, or Computational Fluid Dynamics / Discrete Element Method model, is a process used to model or simulate systems combining fluids with solids or particles. In CFD-DEM, the motion of discrete solids or particles phase is obtained by the Discrete Element Method (DEM) which applies Newton's laws of motion to every particle, while the flow of continuum fluid is described by the local averaged Navier–Stokes equations that can be solved using the traditional Computational Fluid Dynamics (CFD) approach. The interactions between the fluid phase and solids phase is modeled by use of Newton's third law.

A CFD-DEM model is suitable for the modeling or simulation of fluid-solids or fluid-particles systems. In a typical CFD-DEM model, the phase motion of discrete solids or particles is obtained by the Discrete Element Method (DEM) which applies Newton's laws of motion to every particle and the flow of continuum fluid is described by the local averaged Navier–Stokes equations that can be solved by the traditional Computational Fluid Dynamics (CFD). The model is first proposed by Tsuji et al. The interactions between the fluid phase and solids phase is better modeled according to Newton's third law.

Gretar Tryggvason is Department Head of Mechanical Engineering and Charles A. Miller Jr. Distinguished Professor at Johns Hopkins University. He is known for developing the front tracking method to simulate multiphase flows and free surface flows. Tryggvason was the editor-in-chief of Journal of Computational Physics from 2002–2015.

In applied mathematics, the name finite pointset method is a general approach for the numerical solution of problems in continuum mechanics, such as the simulation of fluid flows. In this approach the medium is represented by a finite set of points, each endowed with the relevant local properties of the medium such as density, velocity, pressure, and temperature.

The multiphase particle-in-cell method (MP-PIC) is a numerical method for modeling particle-fluid and particle-particle interactions in a computational fluid dynamics (CFD) calculation. The MP-PIC method achieves greater stability than its particle-in-cell predecessor by simultaneously treating the solid particles as computational particles and as a continuum. In the MP-PIC approach, the particle properties are mapped from the Lagrangian coordinates to an Eulerian grid through the use of interpolation functions. After evaluation of the continuum derivative terms, the particle properties are mapped back to the individual particles. This method has proven to be stable in dense particle flows, computationally efficient, and physically accurate. This has allowed the MP-PIC method to be used as particle-flow solver for the simulation of industrial-scale chemical processes involving particle-fluid flows.

Smoothed finite element methods (S-FEM) are a particular class of numerical simulation algorithms for the simulation of physical phenomena. It was developed by combining meshfree methods with the finite element method. S-FEM are applicable to solid mechanics as well as fluid dynamics problems, although so far they have mainly been applied to the former.

<span class="mw-page-title-main">Extended discrete element method</span> Granular material interaction simulation technique

The extended discrete element method (XDEM) is a numerical technique that extends the dynamics of granular material or particles as described through the classical discrete element method (DEM) by additional properties such as the thermodynamic state, stress/strain or electro-magnetic field for each particle. Contrary to a continuum mechanics concept, the XDEM aims at resolving the particulate phase with its various processes attached to the particles. While the discrete element method predicts position and orientation in space and time for each particle, the extended discrete element method additionally estimates properties such as internal temperature and/or species distribution or mechanical impact with structures.

Lian-Ping Wang is a mechanical engineer and academic, most known for his work on computational fluid dynamics, turbulence, particle-laden flow, and immiscible multiphase flow, and their applications to industrial and atmospheric processes. He is the chair professor of mechanics and aerospace engineering at the Southern University of Science and Technology in China, professor of mechanical engineering, and joint professor of physical ocean science and engineering at University of Delaware.

<span class="mw-page-title-main">Momentum mapping format</span> Technique in the Material Point Method (MPM)

Momentum mapping format is a key technique in the Material Point Method (MPM) for transferring physical quantities such as momentum, mass, and stress between a material point and a background grid.

References

Specific
  1. Nabian, Mohammad Amin; Farhadi, Leila (2017). "Multiphase Mesh-Free Particle Method for Simulating Granular Flows and Sediment Transport". Journal of Hydraulic Engineering. 143 (4): 04016102. doi:10.1061/(asce)hy.1943-7900.0001275.
  2. Nabian, Mohammad Amin; Farhadi, Leila (2014-08-03). "Numerical Simulation of Solitary Wave Using the Fully Lagrangian Method of Moving Particle Semi Implicit". Volume 1D, Symposia: Transport Phenomena in Mixing; Turbulent Flows; Urban Fluid Mechanics; Fluid Dynamic Behavior of Complex Particles; Analysis of Elementary Processes in Dispersed Multiphase Flows; Multiphase Flow with Heat/Mass Transfer in Process Technology; Fluid Mechanics of Aircraft and Rocket Emissions and Their Environmental Impacts; High Performance CFD Computation; Performance of Multiphase Flow Systems; Wind Energy; Uncertainty Quantification in Flow Measurements and Simulations. pp. V01DT30A006. doi:10.1115/FEDSM2014-22237. ISBN   978-0-7918-4624-7.
  3. Nabian, Mohammad Amin; Farhadi, Leila (2014-11-14). "Stable Moving Particle Semi Implicit Method for Modeling Waves Generated by Submarine Landslides". Volume 7: Fluids Engineering Systems and Technologies. pp. V007T09A019. doi:10.1115/IMECE2014-40419. ISBN   978-0-7918-4954-5.