Finite element method

Last updated
Visualization of how a car deforms in an asymmetrical crash using finite element analysis FAE visualization.jpg
Visualization of how a car deforms in an asymmetrical crash using finite element analysis

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

Contents

The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems). To solve a problem, the FEM subdivides a large system into smaller, simpler parts called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. The method approximates the unknown function over the domain. [1] The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem. The FEM then approximates a solution by minimizing an associated error function via the calculus of variations.

Studying or analyzing a phenomenon with FEM is often referred to as finite element analysis (FEA).

Basic concepts

Example of 2D mesh.png
FEM mesh created by an analyst before finding a solution to a magnetic problem using FEM software. Colors indicate that the analyst has set material properties for each zone, in this case, a conducting wire coil in orange; a ferromagnetic component (perhaps iron) in light blue; and air in grey. Although the geometry may seem simple, it would be very challenging to calculate the magnetic field for this setup without FEM software using equations alone.
FEM example of 2D solution.png
FEM solution to the problem at left, involving a cylindrically shaped magnetic shield. The ferromagnetic cylindrical part shields the area inside the cylinder by diverting the magnetic field created by the coil (rectangular area on the right). The color represents the amplitude of the magnetic flux density, as indicated by the scale in the inset legend, red being high amplitude. The area inside the cylinder is low amplitude (dark blue, with widely spaced lines of magnetic flux), which suggests that the shield is performing as it was designed to.

The subdivision of a whole domain into simpler parts has several advantages: [2]

Typical work out of the method involves:

  1. dividing the domain of the problem into a collection of subdomains, with each subdomain represented by a set of element equations to the original problem
  2. systematically recombining all sets of element equations into a global system of equations for the final calculation.

The global system of equations has known solution techniques and can be calculated from the initial values of the original problem to obtain a numerical answer.

In the first step above, the element equations are simple equations that locally approximate the original complex equations to be studied, where the original equations are often partial differential equations (PDE). To explain the approximation in this process, the finite element method is commonly introduced as a special case of Galerkin method. The process, in mathematical language, is to construct an integral of the inner product of the residual and the weight functions and set the integral to zero. In simple terms, it is a procedure that minimizes the approximation error by fitting trial functions into the PDE. The residual is the error caused by the trial functions, and the weight functions are polynomial approximation functions that project the residual. The process eliminates all the spatial derivatives from the PDE, thus approximating the PDE locally with

These equation sets are element equations. They are linear if the underlying PDE is linear and vice versa. Algebraic equation sets that arise in the steady-state problems are solved using numerical linear algebra methods. In contrast, ordinary differential equation sets that occur in the transient problems are solved by numerical integration using standard techniques such as Euler's method or the Runge-Kutta method.

In step (2) above, a global system of equations is generated from the element equations by transforming coordinates from the subdomains' local nodes to the domain's global nodes. This spatial transformation includes appropriate orientation adjustments as applied in relation to the reference coordinate system. The process is often carried out by FEM software using coordinate data generated from the subdomains.

The practical application of FEM is known as finite element analysis (FEA). FEA as applied in engineering, is a computational tool for performing engineering analysis. It includes the use of mesh generation techniques for dividing a complex problem into small elements, as well as the use of software coded with a FEM algorithm. In applying FEA, the complex problem is usually a physical system with the underlying physics such as the Euler–Bernoulli beam equation, the heat equation, or the Navier-Stokes equations expressed in either PDE or integral equations, while the divided small elements of the complex problem represent different areas in the physical system.

FEA may be used for analyzing problems over complicated domains (like cars and oil pipelines) when the domain changes (as during a solid-state reaction with a moving boundary), when the desired precision varies over the entire domain, or when the solution lacks smoothness. FEA simulations provide a valuable resource as they remove multiple instances of creating and testing complex prototypes for various high-fidelity situations.[ citation needed ] For example, in a frontal crash simulation, it is possible to increase prediction accuracy in "important" areas like the front of the car and reduce it in its rear (thus reducing the cost of the simulation). Another example would be in numerical weather prediction, where it is more important to have accurate predictions over developing highly nonlinear phenomena (such as tropical cyclones in the atmosphere, or eddies in the ocean) rather than relatively calm areas.

A clear, detailed, and practical presentation of this approach can be found in The Finite Element Method for Engineers. [3]

History

While it is difficult to quote the date of the invention of the finite element method, the method originated from the need to solve complex elasticity and structural analysis problems in civil and aeronautical engineering. [4] Its development can be traced back to work by Alexander Hrennikoff [5] and Richard Courant [6] in the early 1940s. Another pioneer was Ioannis Argyris. In the USSR, the introduction of the practical application of the method is usually connected with the name of Leonard Oganesyan. [7] It was also independently rediscovered in China by Feng Kang in the later 1950s and early 1960s, based on the computations of dam constructions, where it was called the finite difference method based on variation principle. Although the approaches used by these pioneers are different, they share one essential characteristic: mesh discretization of a continuous domain into a set of discrete sub-domains, usually called elements.

Hrennikoff's work discretizes the domain by using a lattice analogy, while Courant's approach divides the domain into finite triangular subregions to solve second order elliptic partial differential equations that arise from the problem of torsion of a cylinder. Courant's contribution was evolutionary, drawing on a large body of earlier results for PDEs developed by Lord Rayleigh, Walther Ritz, and Boris Galerkin.

The finite element method obtained its real impetus in the 1960s and 1970s by the developments of J. H. Argyris with co-workers at the University of Stuttgart, R. W. Clough with co-workers at UC Berkeley, O. C. Zienkiewicz with co-workers Ernest Hinton, Bruce Irons [8] and others at Swansea University, Philippe G. Ciarlet at the University of Paris 6 and Richard Gallagher with co-workers at Cornell University. Further impetus was provided in these years by available open-source finite element programs. NASA sponsored the original version of NASTRAN. UC Berkeley made the finite element programs SAP IV [9] and later OpenSees widely available. In Norway, the ship classification society Det Norske Veritas (now DNV GL) developed Sesam in 1969 for use in the analysis of ships. [10] A rigorous mathematical basis to the finite element method was provided in 1973 with the publication by Gilbert Strang and George Fix. [11] The method has since been generalized for the numerical modeling of physical systems in a wide variety of engineering disciplines, e.g., electromagnetism, heat transfer, and fluid dynamics. [12] [13]

Technical discussion

The structure of finite element methods

A finite element method is characterized by a variational formulation, a discretization strategy, one or more solution algorithms, and post-processing procedures.

Examples of the variational formulation are the Galerkin method, the discontinuous Galerkin method, mixed methods, etc.

A discretization strategy is understood to mean a clearly defined set of procedures that cover (a) the creation of finite element meshes, (b) the definition of basis function on reference elements (also called shape functions), and (c) the mapping of reference elements onto the elements of the mesh. Examples of discretization strategies are the h-version, p-version, hp-version, x-FEM, isogeometric analysis, etc. Each discretization strategy has certain advantages and disadvantages. A reasonable criterion in selecting a discretization strategy is to realize nearly optimal performance for the broadest set of mathematical models in a particular model class.

Various numerical solution algorithms can be classified into two broad categories; direct and iterative solvers. These algorithms are designed to exploit the sparsity of matrices that depend on the variational formulation and discretization strategy choices.

Post-processing procedures are designed to extract the data of interest from a finite element solution. To meet the requirements of solution verification, postprocessors need to provide for a posteriori error estimation in terms of the quantities of interest. When the errors of approximation are larger than what is considered acceptable, then the discretization has to be changed either by an automated adaptive process or by the action of the analyst. Some very efficient postprocessors provide for the realization of superconvergence.

Illustrative problems P1 and P2

The following two problems demonstrate the finite element method.

P1 is a one-dimensional problem

where is given, is an unknown function of , and is the second derivative of with respect to .

P2 is a two-dimensional problem (Dirichlet problem)

where is a connected open region in the plane whose boundary is nice (e.g., a smooth manifold or a polygon), and and denote the second derivatives with respect to and , respectively.

The problem P1 can be solved directly by computing antiderivatives. However, this method of solving the boundary value problem (BVP) works only when there is one spatial dimension. It does not generalize to higher-dimensional problems or problems like . For this reason, we will develop the finite element method for P1 and outline its generalization to P2.

Our explanation will proceed in two steps, which mirror two essential steps one must take to solve a boundary value problem (BVP) using the FEM.

After this second step, we have concrete formulae for a large but finite-dimensional linear problem whose solution will approximately solve the original BVP. This finite-dimensional problem is then implemented on a computer.

Weak formulation

The first step is to convert P1 and P2 into their equivalent weak formulations.

The weak form of P1

If solves P1, then for any smooth function that satisfies the displacement boundary conditions, i.e. at and , we have

Conversely, if with satisfies (1) for every smooth function then one may show that this will solve P1. The proof is easier for twice continuously differentiable (mean value theorem) but may be proved in a distributional sense as well.

We define a new operator or map by using integration by parts on the right-hand-side of (1):

 

 

 

 

(2)

where we have used the assumption that .

The weak form of P2

If we integrate by parts using a form of Green's identities, we see that if solves P2, then we may define for any by

where denotes the gradient and denotes the dot product in the two-dimensional plane. Once more can be turned into an inner product on a suitable space of once differentiable functions of that are zero on . We have also assumed that (see Sobolev spaces). The existence and uniqueness of the solution can also be shown.

A proof outline of the existence and uniqueness of the solution

We can loosely think of to be the absolutely continuous functions of that are at and (see Sobolev spaces). Such functions are (weakly) once differentiable, and it turns out that the symmetric bilinear map then defines an inner product which turns into a Hilbert space (a detailed proof is nontrivial). On the other hand, the left-hand-side is also an inner product, this time on the Lp space . An application of the Riesz representation theorem for Hilbert spaces shows that there is a unique solving (2) and, therefore, P1. This solution is a-priori only a member of , but using elliptic regularity, will be smooth if is.

Discretization

A function in
H
0
1
,
{\displaystyle H_{0}^{1},}
with zero values at the endpoints (blue) and a piecewise linear approximation (red) Finite element method 1D illustration1.png
A function in with zero values at the endpoints (blue) and a piecewise linear approximation (red)

P1 and P2 are ready to be discretized, which leads to a common sub-problem (3). The basic idea is to replace the infinite-dimensional linear problem:

Find such that

with a finite-dimensional version:

Find such that

 

 

 

 

(3)

where is a finite-dimensional subspace of . There are many possible choices for (one possibility leads to the spectral method). However, we take as a space of piecewise polynomial functions for the finite element method.

For problem P1

We take the interval , choose values of with and we define by:

where we define and . Observe that functions in are not differentiable according to the elementary definition of calculus. Indeed, if then the derivative is typically not defined at any , . However, the derivative exists at every other value of , and one can use this derivative for integration by parts.

A piecewise linear function in two dimensions Piecewise linear function2D.svg
A piecewise linear function in two dimensions

For problem P2

We need to be a set of functions of . In the figure on the right, we have illustrated a triangulation of a 15-sided polygonal region in the plane (below), and a piecewise linear function (above, in color) of this polygon which is linear on each triangle of the triangulation; the space would consist of functions that are linear on each triangle of the chosen triangulation.

One hopes that as the underlying triangular mesh becomes finer and finer, the solution of the discrete problem (3) will, in some sense, converge to the solution of the original boundary value problem P2. To measure this mesh fineness, the triangulation is indexed by a real-valued parameter which one takes to be very small. This parameter will be related to the largest or average triangle size in the triangulation. As we refine the triangulation, the space of piecewise linear functions must also change with . For this reason, one often reads instead of in the literature. Since we do not perform such an analysis, we will not use this notation.

Choosing a basis

Interpolation of a Bessel function
Linear interpolation of J0 (basis set).svg
16 scaled and shifted triangular basis functions (colors) used to reconstruct a zeroeth order Bessel function J0 (black)
Linear interpolation of J1 (basis set).svg
The linear combination of basis functions (yellow) reproduces J0 (black) to any desired accuracy.

To complete the discretization, we must select a basis of . In the one-dimensional case, for each control point we will choose the piecewise linear function in whose value is at and zero at every , i.e.,

for ; this basis is a shifted and scaled tent function. For the two-dimensional case, we choose again one basis function per vertex of the triangulation of the planar region . The function is the unique function of whose value is at and zero at every .

Depending on the author, the word "element" in the "finite element method" refers to the domain's triangles, the piecewise linear basis function, or both. So, for instance, an author interested in curved domains might replace the triangles with curved primitives and so might describe the elements as being curvilinear. On the other hand, some authors replace "piecewise linear" with "piecewise quadratic" or even "piecewise polynomial". The author might then say "higher order element" instead of "higher degree polynomial". The finite element method is not restricted to triangles (tetrahedra in 3-d or higher-order simplexes in multidimensional spaces). Still, it can be defined on quadrilateral subdomains (hexahedra, prisms, or pyramids in 3-d, and so on). Higher-order shapes (curvilinear elements) can be defined with polynomial and even non-polynomial shapes (e.g., ellipse or circle).

Examples of methods that use higher degree piecewise polynomial basis functions are the hp-FEM and spectral FEM.

More advanced implementations (adaptive finite element methods) utilize a method to assess the quality of the results (based on error estimation theory) and modify the mesh during the solution aiming to achieve an approximate solution within some bounds from the exact solution of the continuum problem. Mesh adaptivity may utilize various techniques; the most popular are:

Small support of the basis

Solving the two-dimensional problem
u
x
x
+
u
y
y
=
-
4
{\displaystyle u_{xx}+u_{yy}=-4}
in the disk centered at the origin and radius 1, with zero boundary conditions.
(a) The triangulation. Finite element triangulation.svg
Solving the two-dimensional problem in the disk centered at the origin and radius 1, with zero boundary conditions.
(a) The triangulation.
(b) The sparse matrix L of the discretized linear system Finite element sparse matrix.png
(b) The sparse matrix L of the discretized linear system
(c) The computed solution,
u
(
x
,
y
)
=
1
-
x
2
-
y
2
{\displaystyle u(x,y)=1-x^{2}-y^{2}} Finite element solution.svg
(c) The computed solution,

The primary advantage of this choice of basis is that the inner products

and

will be zero for almost all . (The matrix containing in the location is known as the Gramian matrix.) In the one dimensional case, the support of is the interval . Hence, the integrands of and are identically zero whenever .

Similarly, in the planar case, if and do not share an edge of the triangulation, then the integrals

and

are both zero.

Matrix form of the problem

If we write and then problem (3), taking for , becomes

for

 

 

 

 

(4)

If we denote by and the column vectors and , and if we let

and

be matrices whose entries are

and

then we may rephrase (4) as

It is not necessary to assume . For a general function , problem (3) with for becomes actually simpler, since no matrix is used,

where and for .

As we have discussed before, most of the entries of and are zero because the basis functions have small support. So we now have to solve a linear system in the unknown where most of the entries of the matrix , which we need to invert, are zero.

Such matrices are known as sparse matrices, and there are efficient solvers for such problems (much more efficient than actually inverting the matrix.) In addition, is symmetric and positive definite, so a technique such as the conjugate gradient method is favored. For problems that are not too large, sparse LU decompositions and Cholesky decompositions still work well. For instance, MATLAB's backslash operator (which uses sparse LU, sparse Cholesky, and other factorization methods) can be sufficient for meshes with a hundred thousand vertices.

The matrix is usually referred to as the stiffness matrix, while the matrix is dubbed the mass matrix.

General form of the finite element method

In general, the finite element method is characterized by the following process.

Separate consideration is the smoothness of the basis functions. For second-order elliptic boundary value problems, piecewise polynomial basis function that is merely continuous suffice (i.e., the derivatives are discontinuous.) For higher-order partial differential equations, one must use smoother basis functions. For instance, for a fourth-order problem such as , one may use piecewise quadratic basis functions that are .

Another consideration is the relation of the finite-dimensional space to its infinite-dimensional counterpart in the examples above . A conforming element method is one in which space is a subspace of the element space for the continuous problem. The example above is such a method. If this condition is not satisfied, we obtain a nonconforming element method, an example of which is the space of piecewise linear functions over the mesh, which are continuous at each edge midpoint. Since these functions are generally discontinuous along the edges, this finite-dimensional space is not a subspace of the original .

Typically, one has an algorithm for subdividing a given mesh. If the primary method for increasing precision is to subdivide the mesh, one has an h-method (h is customarily the diameter of the largest element in the mesh.) In this manner, if one shows that the error with a grid is bounded above by , for some and , then one has an order p method. Under specific hypotheses (for instance, if the domain is convex), a piecewise polynomial of order method will have an error of order .

If instead of making h smaller, one increases the degree of the polynomials used in the basis function, one has a p-method. If one combines these two refinement types, one obtains an hp-method (hp-FEM). In the hp-FEM, the polynomial degrees can vary from element to element. High-order methods with large uniform p are called spectral finite element methods (SFEM). These are not to be confused with spectral methods.

For vector partial differential equations, the basis functions may take values in .

Various types of finite element methods

AEM

The Applied Element Method or AEM combines features of both FEM and Discrete element method or (DEM).

A-FEM

Yang and Lui introduced the Augmented-Finite Element Method, whose goal was to model the weak and strong discontinuities without needing extra DoFs, as PuM stated.

CutFEM

The Cut Finite Element Approach was developed in 2014. [14] The approach is "to make the discretization as independent as possible of the geometric description and minimize the complexity of mesh generation, while retaining the accuracy and robustness of a standard finite element method." [15]

Generalized finite element method

The generalized finite element method (GFEM) uses local spaces consisting of functions, not necessarily polynomials, that reflect the available information on the unknown solution and thus ensure good local approximation. Then a partition of unity is used to “bond” these spaces together to form the approximating subspace. The effectiveness of GFEM has been shown when applied to problems with domains having complicated boundaries, problems with micro-scales, and problems with boundary layers. [16]

Mixed finite element method

The mixed finite element method is a type of finite element method in which extra independent variables are introduced as nodal variables during the discretization of a partial differential equation problem.

Variable – polynomial

The hp-FEM combines adaptively elements with variable size h and polynomial degree p to achieve exceptionally fast, exponential convergence rates. [17]

hpk-FEM

The hpk-FEM combines adaptively elements with variable size h, polynomial degree of the local approximations p, and global differentiability of the local approximations (k-1) to achieve the best convergence rates.

XFEM

The extended finite element method (XFEM) is a numerical technique based on the generalized finite element method (GFEM) and the partition of unity method (PUM). It extends the classical finite element method by enriching the solution space for solutions to differential equations with discontinuous functions. Extended finite element methods enrich the approximation space to naturally reproduce the challenging feature associated with the problem of interest: the discontinuity, singularity, boundary layer, etc. It was shown that for some problems, such an embedding of the problem's feature into the approximation space can significantly improve convergence rates and accuracy. Moreover, treating problems with discontinuities with XFEMs suppresses the need to mesh and re-mesh the discontinuity surfaces, thus alleviating the computational costs and projection errors associated with conventional finite element methods at the cost of restricting the discontinuities to mesh edges.

Several research codes implement this technique to various degrees:

  1. GetFEM++
  2. xfem++
  3. openxfem++

XFEM has also been implemented in codes like Altair Radios, ASTER, Morfeo, and Abaqus. It is increasingly being adopted by other commercial finite element software, with a few plugins and actual core implementations available (ANSYS, SAMCEF, OOFELIE, etc.).

Scaled boundary finite element method (SBFEM)

The introduction of the scaled boundary finite element method (SBFEM) came from Song and Wolf (1997). [18] The SBFEM has been one of the most profitable contributions in the area of numerical analysis of fracture mechanics problems. It is a semi-analytical fundamental-solutionless method combining the advantages of finite element formulations and procedures and boundary element discretization. However, unlike the boundary element method, no fundamental differential solution is required.

S-FEM

The S-FEM, Smoothed Finite Element Methods, is a particular class of numerical simulation algorithms for the simulation of physical phenomena. It was developed by combining mesh-free methods with the finite element method.

Spectral element method

Spectral element methods combine the geometric flexibility of finite elements and the acute accuracy of spectral methods. Spectral methods are the approximate solution of weak-form partial equations based on high-order Lagrangian interpolants and used only with certain quadrature rules. [19]

Meshfree methods

Discontinuous Galerkin methods

Finite element limit analysis

Stretched grid method

Loubignac iteration

Loubignac iteration is an iterative method in finite element methods.

Crystal plasticity finite element method (CPFEM)

The crystal plasticity finite element method (CPFEM) is an advanced numerical tool developed by Franz Roters. Metals can be regarded as crystal aggregates, which behave anisotropy under deformation, such as abnormal stress and strain localization. CPFEM, based on the slip (shear strain rate), can calculate dislocation, crystal orientation, and other texture information to consider crystal anisotropy during the routine. It has been applied in the numerical study of material deformation, surface roughness, fractures, etc.

Virtual element method (VEM)

The virtual element method (VEM), introduced by Beirão da Veiga et al. (2013) [20] as an extension of mimetic finite difference (MFD) methods, is a generalization of the standard finite element method for arbitrary element geometries. This allows admission of general polygons (or polyhedra in 3D) that are highly irregular and non-convex in shape. The name virtual derives from the fact that knowledge of the local shape function basis is not required and is, in fact, never explicitly calculated.

Some types of finite element methods (conforming, nonconforming, mixed finite element methods) are particular cases of the gradient discretization method (GDM). Hence the convergence properties of the GDM, which are established for a series of problems (linear and nonlinear elliptic problems, linear, nonlinear, and degenerate parabolic problems), hold as well for these particular FEMs.

Comparison to the finite difference method

The finite difference method (FDM) is an alternative way of approximating solutions of PDEs. The differences between FEM and FDM are:

Generally, FEM is the method of choice in all types of analysis in structural mechanics (i.e., solving for deformation and stresses in solid bodies or dynamics of structures). In contrast, computational fluid dynamics (CFD) tend to use FDM or other methods like finite volume method (FVM). CFD problems usually require discretization of the problem into a large number of cells/gridpoints (millions and more). Therefore the cost of the solution favors simpler, lower-order approximation within each cell. This is especially true for 'external flow' problems, like airflow around the car, airplane, or weather simulation.

Application

3D pollution transport model - concentration field on ground level Vanadis a1 test.gif
3D pollution transport model - concentration field on ground level
3D pollution transport model - concentration field on perpendicular surface Vanadis a2 test.gif
3D pollution transport model - concentration field on perpendicular surface

Various specializations under the umbrella of the mechanical engineering discipline (such as aeronautical, biomechanical, and automotive industries) commonly use integrated FEM in the design and development of their products. Several modern FEM packages include specific components such as thermal, electromagnetic, fluid, and structural working environments. In a structural simulation, FEM helps tremendously in producing stiffness and strength visualizations and minimizing weight, materials, and costs. [23]

FEM allows detailed visualization of where structures bend or twist, indicating the distribution of stresses and displacements. FEM software provides a wide range of simulation options for controlling the complexity of modeling and system analysis. Similarly, the desired level of accuracy required and associated computational time requirements can be managed simultaneously to address most engineering applications. FEM allows entire designs to be constructed, refined, and optimized before the design is manufactured. The mesh is an integral part of the model and must be controlled carefully to give the best results. Generally, the higher the number of elements in a mesh, the more accurate the solution of the discretized problem. However, there is a value at which the results converge, and further mesh refinement does not increase accuracy. [24]

Finite Element Model of a human knee joint Human knee joint FE model.png
Finite Element Model of a human knee joint

This powerful design tool has significantly improved both the standard of engineering designs and the design process methodology in many industrial applications. [26] The introduction of FEM has substantially decreased the time to take products from concept to the production line. [26] Testing and development have been accelerated primarily through improved initial prototype designs using FEM. [27] In summary, benefits of FEM include increased accuracy, enhanced design and better insight into critical design parameters, virtual prototyping, fewer hardware prototypes, a faster and less expensive design cycle, increased productivity, and increased revenue. [26]

In the 1990s FEM was proposed for use in stochastic modeling for numerically solving probability models [28] and later for reliability assessment. [29]

See also

Related Research Articles

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.

In plasma physics, the particle-in-cell (PIC) method refers to a technique used to solve a certain class of partial differential equations. In this method, individual particles in a Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents are computed simultaneously on Eulerian (stationary) mesh points.

<span class="mw-page-title-main">Mesh generation</span> Subdivision of space into cells

Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI, depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine in areas that are important for the subsequent calculations.

The theory of optimal control is concerned with operating a dynamic system at minimum cost. The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem. One of the main results in the theory is that the solution is provided by the linear–quadratic regulator (LQR), a feedback controller whose equations are given below.

In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating derivatives with finite differences. Both the spatial domain and time domain are discretized, or broken into a finite number of intervals, and the values of the solution at the end points of the intervals are approximated by solving algebraic equations containing finite differences and values from nearby points.

<span class="mw-page-title-main">Meshfree methods</span> Methods in numerical analysis not requiring knowledge of neighboring points

In the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort. The absence of a mesh allows Lagrangian simulations, in which the nodes can move according to the velocity field.

<span class="mw-page-title-main">Elliptic boundary value problem</span>

In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the stable state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on.

In the numerical solution of partial differential equations, a topic in mathematics, the spectral element method (SEM) is a formulation of the finite element method (FEM) that uses high-degree piecewise polynomials as basis functions. The spectral element method was introduced in a 1984 paper by A. T. Patera. Although Patera is credited with development of the method, his work was a rediscovery of an existing method

In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations. They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and plasma physics.

<span class="mw-page-title-main">Domain decomposition methods</span>

In mathematics, numerical analysis, and numerical partial differential equations, domain decomposition methods solve a boundary value problem by splitting it into smaller boundary value problems on subdomains and iterating to coordinate the solution between adjacent subdomains. A coarse problem with one or few unknowns per subdomain is used to further coordinate the solution between the subdomains globally. The problems on the subdomains are independent, which makes domain decomposition methods suitable for parallel computing. Domain decomposition methods are typically used as preconditioners for Krylov space iterative methods, such as the conjugate gradient method, GMRES, and LOBPCG.

hp-FEM is a generalization of the finite element method (FEM) for solving partial differential equations numerically based on piecewise-polynomial approximations. hp-FEM originates from the discovery by Barna A. Szabó and Ivo Babuška that the finite element method converges exponentially fast when the mesh is refined using a suitable combination of h-refinements and p-refinements .The exponential convergence of hp-FEM has been observed by numerous independent researchers.

In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix is a matrix that represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation.

Miniaturizing components has always been a primary goal in the semiconductor industry because it cuts production cost and lets companies build smaller computers and other devices. Miniaturization, however, has increased dissipated power per unit area and made it a key limiting factor in integrated circuit performance. Temperature increase becomes relevant for relatively small-cross-sections wires, where it may affect normal semiconductor behavior. Besides, since the generation of heat is proportional to the frequency of operation for switching circuits, fast computers have larger heat generation than slow ones, an undesired effect for chips manufacturers. This article summaries physical concepts that describe the generation and conduction of heat in an integrated circuit, and presents numerical methods that model heat transfer from a macroscopic point of view.

In numerical mathematics, the boundary knot method (BKM) is proposed as an alternative boundary-type meshfree distance function collocation scheme.

The Kansa method is a computer method used to solve partial differential equations. Its main advantage is it is very easy to understand and program on a computer. It is much less complicated than the finite element method. Another advantage is it works well on multi variable problems. The finite element method is complicated when working with more than 3 space variables and time.

Fluid motion is governed by the Navier–Stokes equations, a set of coupled and nonlinear partial differential equations derived from the basic laws of conservation of mass, momentum and energy. The unknowns are usually the flow velocity, the pressure and density and temperature. The analytical solution of this equation is impossible hence scientists resort to laboratory experiments in such situations. The answers delivered are, however, usually qualitatively different since dynamical and geometric similitude are difficult to enforce simultaneously between the lab experiment and the prototype. Furthermore, the design and construction of these experiments can be difficult, particularly for stratified rotating flows. Computational fluid dynamics (CFD) is an additional tool in the arsenal of scientists. In its early days CFD was often controversial, as it involved additional approximation to the governing equations and raised additional (legitimate) issues. Nowadays CFD is an established discipline alongside theoretical and experimental methods. This position is in large part due to the exponential growth of computer power which has allowed us to tackle ever larger and more complex problems.

p-FEM or the p-version of the finite element method is a numerical method for solving partial differential equations. It is a discretization strategy in which the finite element mesh is fixed and the polynomial degrees of elements are increased such that the lowest polynomial degree, denoted by , approaches infinity. This is in contrast with the "h-version" or "h-FEM", a widely used discretization strategy, in which the polynomial degrees of elements are fixed and the mesh is refined such that the diameter of the largest element, denoted by approaches zero.

<span class="mw-page-title-main">Gradient discretisation method</span>

In numerical mathematics, the gradient discretisation method (GDM) is a framework which contains classical and recent numerical schemes for diffusion problems of various kinds: linear or non-linear, steady-state or time-dependent. The schemes may be conforming or non-conforming, and may rely on very general polygonal or polyhedral meshes.

References

  1. Daryl L. Logan (2011). A first course in the finite element method. Cengage Learning. ISBN   9780495668275.
  2. 1 2 Reddy, J. N. (2006). An Introduction to the Finite Element Method (Third ed.). McGraw-Hill. ISBN   9780071267618.
  3. Huebner, Kenneth H. (2001). The Finite Element Method for Engineers. Wiley. ISBN   978-0-471-37078-9.
  4. Liu, Wing Kam; Li, Shaofan; Park, Harold S. (2022). "Eighty Years of the Finite Element Method: Birth, Evolution, and Future". Archives of Computational Methods in Engineering. 29 (6): 4431–4453. arXiv: 2107.04960 . doi: 10.1007/s11831-022-09740-9 . ISSN   1134-3060. S2CID   235794921.
  5. Hrennikoff, Alexander (1941). "Solution of problems of elasticity by the framework method". Journal of Applied Mechanics. 8 (4): 169–175. Bibcode:1941JAM.....8A.169H. doi:10.1115/1.4009129.
  6. Courant, R. (1943). "Variational methods for the solution of problems of equilibrium and vibrations". Bulletin of the American Mathematical Society. 49: 1–23. doi: 10.1090/s0002-9904-1943-07818-4 .
  7. "СПб ЭМИ РАН". emi.nw.ru. Archived from the original on 30 September 2015. Retrieved 17 March 2018.
  8. Hinton, Ernest; Irons, Bruce (July 1968). "Least squares smoothing of experimental data using finite elements". Strain. 4 (3): 24–27. doi:10.1111/j.1475-1305.1968.tb01368.x.
  9. "SAP-IV Software and Manuals". NISEE e-Library, The Earthquake Engineering Online Archive. Archived from the original on 2013-03-09. Retrieved 2013-01-24.
  10. Gard Paulsen; Håkon With Andersen; John Petter Collett; Iver Tangen Stensrud (2014). Building Trust, The history of DNV 1864-2014. Lysaker, Norway: Dinamo Forlag A/S. pp. 121, 436. ISBN   978-82-8071-256-1.
  11. Strang, Gilbert; Fix, George (1973). An Analysis of The Finite Element Method . Prentice Hall. ISBN   978-0-13-032946-2.
  12. Olek C Zienkiewicz; Robert L Taylor; J.Z. Zhu (31 August 2013). The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann. ISBN   978-0-08-095135-5.
  13. Bathe, K.J. (2006). Finite Element Procedures. Cambridge, MA: Klaus-Jürgen Bathe. ISBN   978-0979004902.
  14. celledoni (2023-02-27). "CutFEM: Discretizing Partial Differential Equations and Geometry". ECMI. Retrieved 2023-10-13.
  15. Burman, Erik; Claus, Susanne; Hansbo, Peter; Larson, Mats G.; Massing, André (2015-11-16). "CutFEM: Discretizing geometry and partial differential equations". International Journal for Numerical Methods in Engineering. 104 (7): 472–501. Bibcode:2015IJNME.104..472B. doi: 10.1002/nme.4823 . ISSN   0029-5981.
  16. Babuška, Ivo; Banerjee, Uday; Osborn, John E. (June 2004). "Generalized Finite Element Methods: Main Ideas, Results, and Perspective". International Journal of Computational Methods . 1 (1): 67–103. doi:10.1142/S0219876204000083.
  17. P. Solin, K. Segeth, I. Dolezel: Higher-Order Finite Element Methods, Chapman & Hall/CRC Press, 2003
  18. Song, Chongmin; Wolf, John P. (5 August 1997). "The scaled boundary finite-element method – alias consistent infinitesimal finite-element cell method – for elastodynamics". Computer Methods in Applied Mechanics and Engineering. 147 (3–4): 329–355. Bibcode:1997CMAME.147..329S. doi:10.1016/S0045-7825(97)00021-2.
  19. "Spectral Element Methods". State Key Laboratory of Scientific and Engineering Computing. Archived from the original on 2017-08-10. Retrieved 2017-07-28.
  20. Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A. (2013). "Basic principles of Virtual Element Methods". Mathematical Models and Methods in Applied Sciences . 23 (1): 199–214. doi:10.1142/S0218202512500492.
  21. 1 2 3 Topper, Jürgen (January 2005). "Option pricing with finite elements". Wilmott. 2005 (1): 84–90. doi:10.1002/wilm.42820050119 (inactive 2024-04-07). ISSN   1540-6962.{{cite journal}}: CS1 maint: DOI inactive as of April 2024 (link)
  22. "What's The Difference Between FEM, FDM, and FVM?". Machine Design. 2016-04-18. Archived from the original on 2017-07-28. Retrieved 2017-07-28.
  23. Kiritsis, D.; Eemmanouilidis, Ch.; Koronios, A.; Mathew, J. (2009). "Engineering Asset Management". Proceedings of the 4th World Congress on Engineering Asset Management (WCEAM): 591–592.
  24. "Finite Element Analysis: How to create a great model". Coventive Composites. 2019-03-18. Retrieved 2019-04-05.[ permanent dead link ]
  25. Naghibi Beidokhti, Hamid; Janssen, Dennis; Khoshgoftar, Mehdi; Sprengers, Andre; Perdahcioglu, Emin Semih; Boogaard, Ton Van den; Verdonschot, Nico (2016). "A comparison between dynamic implicit and explicit finite element simulations of the native knee joint" (PDF). Medical Engineering & Physics. 38 (10): 1123–1130. doi:10.1016/j.medengphy.2016.06.001. PMID   27349493. Archived (PDF) from the original on 2018-07-19. Retrieved 2019-09-19.
  26. 1 2 3 Hastings, J. K., Juds, M. A., Brauer, J. R., Accuracy and Economy of Finite Element Magnetic Analysis, 33rd Annual National Relay Conference, April 1985.
  27. McLaren-Mercedes (2006). "McLaren Mercedes: Feature - Stress to impress". Archived from the original on 2006-10-30. Retrieved 2006-10-03.
  28. Peng Long; Wang Jinliang; Zhu Qiding (19 May 1995). "Methods with high accuracy for finite element probability computing". Journal of Computational and Applied Mathematics. 59 (2): 181–189. doi:10.1016/0377-0427(94)00027-X.
  29. Haldar, Achintya; Mahadevan, Sankaran (2000). Reliability Assessment Using Stochastic Finite Element Analysis. John Wiley & Sons. ISBN   978-0471369615.

Further reading