SDC Verifier

Last updated
SDC Verifier
SDC Verifier logo.svg
Developer(s) SDC Veifier
Stable release
2021 R1.1
Operating system Windows
Type Computer-aided engineering, Finite Element Analysis
Website sdcverifier.com

SDC Verifier (Structural Design Codes Verifier) is a commercial finite element analysis post-processor software with a calculation core for checking structures according to different standards, either predefined or self programmed, and final report generation with all checks. The goal is to automate routine work and speed up a verification of the engineering projects. It works as an addon for popular FEA software Ansys, [1] Femap and Simcenter 3D. [2]

Contents

It is possible to apply complicated loads: buoyancy, tank ballast and wind. Automatic recognition of joints, welds and panels.

Implemented Standards

The rules for popular design standards are predefined in SDC Verifier. [3] The open structure of the standard makes all checks customizable. The Custom standard can be saved and used for other models, password protected and added to the custom library. This standard can be shared between other users.

Alternative software

Related Research Articles

Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. The condition may refer to a degree of loading or other actions on the structure, while the criteria refer to structural integrity, fitness for use, durability or other design requirements. A structure designed by LSD is proportioned to sustain all actions likely to occur during its design life, and to remain fit for use, with an appropriate level of reliability for each limit state. Building codes based on LSD implicitly define the appropriate levels of reliability by their prescriptions.

Ansys American technology company

Ansys is an American company based in Canonsburg, Pennsylvania. It develops and markets CAE/multiphysics engineering simulation software for product design, testing and operation and offers its products and services to customers worldwide.

I-beam Construction element

An I-beam, also known as H-beam, w-beam, universal beam (UB), rolled steel joist (RSJ), or double-T, is a beam with an I or H-shaped cross-section. The horizontal elements of the I are flanges, and the vertical element is the "web". I-beams are usually made of structural steel and are used in construction and civil engineering.

A steel detailer is a person who produces detailed drawings for steel fabricators and steel erectors. The detailer prepares detailed plans, drawings and other documents for the manufacture and erection of steel members used in the construction of buildings, bridges, industrial plans, and nonbuilding structures.

PikeOS

PikeOS is a commercial, hard real-time operating system (RTOS) that offers a separation kernel based hypervisor with multiple logical partition types for many other operating systems (OS), each called a GuestOS, and applications. It enables users to build certifiable smart devices for the Internet of things (IoT) according to the high quality, safety and security standards of different industries. For safety and security critical real-time applications on controller-based systems without memory management unit (MMU) but with memory protection unit (MPU) PikeOS for MPU is available.

A36 steel is a common structural steel alloy utilized in the United States. The A36 standard was established by the ASTM International. The standard was published in 1960 and has been updated several times since. Prior to 1960, the dominant standards for structural steel in North America were A7 and A9. Note that SAE/AISI A7 and A9 tool steels are not the same as the obsolete ASTM A7 and A9 structural steels.

Steel design, or more specifically, structural steel design, is an area of structural engineering used to design steel structures. These structures include schools, houses, bridges, commercial centers, tall buildings, warehouses, aircraft, ships and stadiums. The design and use of steel frames are commonly employed in the design of steel structures. More advanced structures include steel plates and shells.

Physical design (electronics)

In integrated circuit design, physical design is a step in the standard design cycle which follows after the circuit design. At this step, circuit representations of the components of the design are converted into geometric representations of shapes which, when manufactured in the corresponding layers of materials, will ensure the required functioning of the components. This geometric representation is called integrated circuit layout. This step is usually split into several sub-steps, which include both design and verification and validation of the layout.

Femap is an engineering analysis program sold by Siemens Digital Industries Software that is used to build finite element models of complex engineering problems ("pre-processing") and view solution results ("post-processing"). It runs on Microsoft Windows and provides CAD import, modeling and meshing tools to create a finite element model, as well as postprocessing functionality that allows mechanical engineers to interpret analysis results. The finite element method allows engineers to virtually model components, assemblies, or systems to determine behavior under a given set of boundary conditions, and is typically used in the design process to reduce costly prototyping and testing, evaluate differing designs and materials, and for structural optimization to reduce weight.

Cold-formed steel Steel products shaped by cold-working processes

Cold-formed steel (CFS) is the common term for steel products shaped by cold-working processes carried out near room temperature, such as rolling, pressing, stamping, bending, etc. Stock bars and sheets of cold-rolled steel (CRS) are commonly used in all areas of manufacturing. The terms are opposed to hot-formed steel and hot-rolled steel.

Advance Steel is a CAD software application for 3D modeling and detailing of steel structures and automatic creation of fabrication drawings, bill of materials and NC files. It was initially developed by GRAITEC, but was acquired by Autodesk in 2013. The software runs on AutoCAD.

CargoMax

CargoMax is a stability and load management software application for marine and offshore industries. It is developed and sold by Herbert-ABS Software Solutions, LLC. First released in 1979, CargoMax was one of the first computerized systems for planning and evaluating ship loading; it is currently one of the most-used software applications for this purpose. It helps determine cargo loading sequences by calculating stability and stress based on ship models created from vessel data: lightship weights, hydrostatic characteristics, tank data, and allowable shear forces and bending moments. Naval architects and engineers from Herbert-ABS customize each CargoMax installation using shipyard drawings and technical data. Different installations also include different sets of features from the program.

In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy. It was approved by the European Committee for Standardization (CEN) on 16 April 2004 to enable designers across Europe to practice in any country that adopts the code.

In the Eurocode series of European standards (EN) related to construction, Eurocode 3: Design of steel structures describes how to design of steel structures, using the limit state design philosophy.

FEMtools is a multi-functional, cross-platform and solver-independent family of CAE software programs providing analysis and scripting solutions for many different types of engineering simulation applications. The program is developed, supported and licensed by Dynamic Design Solutions ("DDS") NV, located in Leuven, Belgium.

DNV Certification body and classification society

DNV is an international accredited registrar and classification society headquartered in Høvik, Norway. The company currently has about 12,000 employees and 350 offices operating in more than 100 countries, and provides services for several industries including maritime, oil & gas, renewable energy, electrification, food & beverage and healthcare. DNV GL was created in 2013 as a result of a merger between two leading organizations in the field — Det Norske Veritas (Norway) and Germanischer Lloyd (Germany). In 2021, DNV GL changed its name to DNV, while retaining its post-merger structure.

In the Eurocode series of European standards (EN) related to construction, Eurocode 9: Design of aluminium structures describes how to design aluminium alloy structures. It complies with the principles and requirements for the safety and serviceability of structures, the basis of their design and verification that are given in EN 1990 – Basis of structural design. It sets requirements for structural integrity, including strength, serviceability, durability and fire resistance.

Integrated Software Dependent Systems (ISDS) is an offshore standard (DNV-OS-D203) and recommended practice guideline (DNV-RP-D201) covering systems and software verifications and classification of any integrated system that utilizes extensive software control. The ISDS Recommended Practice (DNV-RP-D201) was launched in 2008 by Det Norske Veritas (DNV), the Norwegian classification society. DNV Offshore Standard OS-D203 launched in April 2010.

Engineering Critical Assessment (ECA) is a procedure by which the safety of a welded structure with defects or flaws can be determined. ECAs utilize the material properties and expected stress history to determine a flaw acceptance criteria which will ensure that welds will not fail during the construction or service life of the welded structure. The assessment can be used before the structure is in use, or during in-service inspection, to determine whether a given weld is in need of repair. ECAs are used throughout the energy, manufacturing, and infrastructure industries. ECAs are based heavily upon fracture mechanics principles, and reflect an improvement over traditional methods of weld quality assurance, which can be arbitrary or overly conservative.

References

  1. "SDC Verifier for ANSYS". Infinite - Simulation Systems.
  2. "SDC Verifier - Check out Purchase & Product Info!".
  3. "Implemented standards - SDC Verifier".