Calculix

Last updated
Original author(s) Guido Dhondt, Klaus Wittig
Stable release
2.22 / 5 August 2024;4 days ago (2024-08-05)
Repository
Operating system Linux, Windows
Type Finite element analysis
License GPL (free software)
Website www.dhondt.de

CalculiX is a free and open-source finite-element analysis application that uses an input format similar to Abaqus. It has an implicit and explicit solver (CCX) written by Guido Dhondt and a pre- and post-processor (CGX) written by Klaus Wittig. [1] The original software was written for the Linux [2] operating system. Convergent Mechanical has ported the application to the Windows operating system. [3]

Contents

The pre-processor component of CalculiX can generate grid data for the computational fluid dynamics programs duns, ISAAC and OpenFOAM. It can also generate input data for the commercial FEM programs Nastran, Ansys and Abaqus. [4] The pre-processor can also generate mesh data from STL files. [5]

There is an active online community that provides support at Discourse. [6] Convergent Mechanical also provides installation support for their extended version of CalculiX for Windows. [3]

There is a friendly CalculiX Launcher [7] with CCX wizard for both Windows and Linux. [8]

Also possible is the Installation in Windows 10 Fall Creator (1709) with the new Linux Subsystem WSL. [9]

A Python library, pycalculix, [10] was written to automate the creation of CalculiX models in the Python programming language. The library provides Python access to building, loading, meshing, solving, and querying CalculiX results for 2D models. Pycalculix was written by Justin Black. Examples and tutorials are available on the pycalculix site. [10]

FreeCAD has developed a FEM workbench that automates the creation of CalculiX models.

There is a lot good examples of use of CalculiX [11] by Prof. Martin Kraska, Brandenburg University of Applied Sciences.

Official repository at Github is https://github.com/Dhondtguido/CalculiX.

Literature

Related Research Articles

<span class="mw-page-title-main">Portage (software)</span> Gentoo package management system

Portage is a package management system originally created for and used by Gentoo Linux and also by ChromeOS, Calculate, Sabayon, and Funtoo Linux among others. Portage is based on the concept of ports collections. Gentoo is sometimes referred to as a meta-distribution due to the extreme flexibility of Portage, which makes it operating-system-independent. The Gentoo/Alt project was concerned with using Portage to manage other operating systems, such as BSDs, macOS and Solaris. The most notable of these implementations is the Gentoo/FreeBSD project.

<span class="mw-page-title-main">Fox toolkit</span>

The FOX toolkit is an open-source, cross-platform widget toolkit, i.e. a library of basic elements for building a graphical user interface (GUI). FOX stands for Free Objects for X.

In computing, a solution stack or software stack is a set of software subsystems or components needed to create a complete platform such that no additional software is needed to support applications. Applications are said to "run on" or "run on top of" the resulting platform.

<span class="mw-page-title-main">Open Cascade Technology</span> Open-source 3D modelling software

Open Cascade Technology (OCCT), formerly called CAS.CADE, is an open-source software development platform for 3D CAD, CAM, CAE, etc. that is developed and supported by Open Cascade SAS company.

<span class="mw-page-title-main">Rhinoceros 3D</span> 3D computer graphics software

Rhinoceros is a commercial 3D computer graphics and computer-aided design (CAD) application software that was developed by TLM, Inc, dba Robert McNeel & Associates, an American, privately held, and employee-owned company that was founded in 1978. Rhinoceros geometry is based on the NURBS mathematical model, which focuses on producing mathematically precise representation of curves and freeform surfaces in computer graphics.

Femap is an engineering analysis program sold by Siemens Digital Industries Software that is used to build finite element models of complex engineering problems ("pre-processing") and view solution results ("post-processing"). It runs on Microsoft Windows and provides CAD import, modeling and meshing tools to create a finite element model, as well as postprocessing functionality that allows mechanical engineers to interpret analysis results. The finite element method allows engineers to virtually model components, assemblies, or systems to determine behavior under a given set of boundary conditions, and is typically used in the design process to reduce costly prototyping and testing, evaluate differing designs and materials, and for structural optimization to reduce weight.

<span class="mw-page-title-main">Abaqus</span> Software for finite element analysis

Abaqus FEA is a software suite for finite element analysis and computer-aided engineering, originally released in 1978. The name and logo of this software are based on the abacus calculation tool. The Abaqus product suite consists of five core software products:

  1. Abaqus/CAE, or "Complete Abaqus Environment". It is a software application used for both the modeling and analysis of mechanical components and assemblies (pre-processing) and visualizing the finite element analysis result. A subset of Abaqus/CAE including only the post-processing module can be launched independently in the Abaqus/Viewer product.
  2. Abaqus/Standard, a general-purpose Finite-Element analyzer that employs implicit integration scheme (traditional).
  3. Abaqus/Explicit, a special-purpose Finite-Element analyzer that employs explicit integration scheme to solve highly nonlinear systems with many complex contacts under transient loads.
  4. Abaqus/CFD, a Computational Fluid Dynamics software application which provides advanced computational fluid dynamics capabilities with extensive support for preprocessing and postprocessing provided in Abaqus/CAE - discontinued in Abaqus 2017 and further releases.
  5. Abaqus/Electromagnetic, a Computational electromagnetics software application which solves advanced computational electromagnetic problems.

Z88 is a software package for the finite element method (FEM) and topology optimization. A team led by Frank Rieg at the University of Bayreuth started development in 1985 and now the software is used by several universities, as well as small and medium-sized enterprises. Z88 is capable of calculating two and three dimensional element types with a linear approach. The software package contains several solvers and two post-processors and is available for Microsoft Windows, Mac OS X and Unix/Linux computers in 32-bit and 64-bit versions. Benchmark tests conducted in 2007 showed a performance on par with commercial software.

<span class="mw-page-title-main">FreeCAD</span> Free and open-source 3D CAD software

FreeCAD is a general-purpose parametric 3D computer-aided design (CAD) modeler and a building information modeling (BIM) software application with finite element method (FEM) support. It is intended for mechanical engineering product design but also expands to a wider range of uses around engineering, such as architecture or electrical engineering. FreeCAD is free and open-source, under the LGPL-2.0-or-later license, and available for Linux, macOS, and Windows operating systems. Users can extend the functionality of the software using the Python programming language.

Sphinx is a documentation generator written and used by the Python community. It is written in Python, and also used in other environments.

<span class="mw-page-title-main">ScanIP</span>

Synopsys Simpleware ScanIP is a 3D image processing and model generation software program developed by Synopsys Inc. to visualise, analyse, quantify, segment and export 3D image data from magnetic resonance imaging (MRI), computed tomography (CT), microtomography and other modalities for computer-aided design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and 3D printing. The software is used in the life sciences, materials science, nondestructive testing, reverse engineering and petrophysics.

<span class="mw-page-title-main">Gmsh</span>

Gmsh is a finite-element mesh generator developed by Christophe Geuzaine and Jean-François Remacle. Released under the GNU General Public License, Gmsh is free software.

<span class="mw-page-title-main">OpenSCAD</span> Free software for creating 3D objects

OpenSCAD is a free software application for creating solid 3D computer-aided design (CAD) objects. It is a script-only based modeller that uses its own description language; the 3D preview can be manipulated interactively, but cannot be interactively modified in 3D. Instead, an OpenSCAD script specifies geometric primitives and defines how they are modified and combined to render a 3D model. As such, the program performs constructive solid geometry (CSG). OpenSCAD is available for Windows, Linux, and macOS.

<span class="mw-page-title-main">Frescobaldi (software)</span> Open source scorewriter

Frescobaldi is an editor for LilyPond music files. It aims to be powerful, yet lightweight and easy to use. Frescobaldi is free software, freely available under the GNU General Public License. It is designed to run on all major operating systems. It is named after Girolamo Frescobaldi, an Italian composer of keyboard music in the late Renaissance and early Baroque period.

MEDINA is a universal pre-/postprocessor for finite element analysis. The development of MEDINA started in the early 1990s at Daimler-Benz AG and was proceeded at debis Systemhaus. Since 2001 the support and the development of MEDINA takes place by T-Systems International GmbH. The current release is MEDINA Rel. 9.0.1.2

Ansible is a suite of software tools that enables infrastructure as code. It is open-source and the suite includes software provisioning, configuration management, and application deployment functionality.

deal.II is a free, open-source library to solve partial differential equations using the finite element method. The current release is version 9.5, released in July 2023. The founding authors of the project — Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat — won the 2007 J. H. Wilkinson Prize for Numerical Software for deal.II. However, it is a worldwide project with around a dozen "Principal Developers", but over the years several hundred people have contributed substantial pieces of code or documentation to the project.

<span class="mw-page-title-main">FEATool Multiphysics</span>

FEATool Multiphysics is a physics, finite element analysis (FEA), and partial differential equation (PDE) simulation toolbox. FEATool Multiphysics features the ability to model fully coupled heat transfer, fluid dynamics, chemical engineering, structural mechanics, fluid-structure interaction (FSI), electromagnetics, as well as user-defined and custom PDE problems in 1D, 2D (axisymmetry), or 3D, all within a graphical user interface (GUI) or optionally as script files. FEATool has been employed and used in academic research, teaching, and industrial engineering simulation contexts.

References