Actran

Last updated
Developer(s) Free Field Technologies, MSC Software Company
Stable release
2021
Operating system Cross-platform
Type CAE software
Acoustic simulation software
License Proprietary EULA
Website www.fft.be

ACTRAN (acronym of ACoustic TRANsmission, also known as the Acoustic NASTRAN) is a finite element-based computer aided engineering software modeling the acoustic behavior of mechanical systems and parts. Actran is being developed by Free Field Technologies, a Belgian software company founded in 1998 by Jean-Pierre Coyette and Jean-Louis Migeot. Free Field Technologies is a wholly owned subsidiary of the MSC Software Corporation since 2011. [1] Free Field Technologies and MSC Software are part of Hexagon AB since 2017. [2]

Contents

History

The development of Actran started in 1998 when Jean-Pierre Coyette, now professor of the Louvain School of Engineering – Université catholique de Louvain, and Jean-Louis Migeot, now professor at the Université Libre de Bruxelles and past president of the Royal Academy of Science, Letters and Fine Arts of Belgium - Académie royale des sciences, des lettres et des beaux-arts de Belgique, cofounded the Free Field Technologies SA software company. The original idea was to develop a finite element-based simulation tool for vibro-acoustic applications able to overcome the limitations of the then dominant Boundary Element Method. The use of finite elements enabled the simulation of complex noise sources, the combination of multiple materials in the same model and the handling of multi-million degrees-of-freedom models. The initial target application was the prediction of the acoustic transmission through complex partitions (hence the name ACTRAN: ACoustic TRANsmission). A central feature of Actran was the use of Infinite Elements (IE) as an alternative to BEM for modelling non-reflecting boundary conditions and calculating the far field. Actran uses conjugated infinite elements, an extension of the wave envelope technique. [3] [4] [5] [6] [7] [8]

Early developments were funded by an industrial consortium and the first commercial release was made broadly available in 2002, after the three-years exclusivity period given to the members of the consortium ended. [9]

Software modules

Actran is written in the Python and C++ languages and is compatible with both Linux and Windows operating systems.

The Actran software is currently divided and licensed into different modules depending on the target application and the physics involved:

Software Interoperability

Actran is integrated with MSC Nastran for vibro-acoustic simulations. Either a MSC Nastran model is translated into an Actran input file, or structural modes are used as part of an Actran analysis. Structural modes can be computed also with other third party software. [22]

Actran is coupled with other MSC Software time domain solvers:

See also

Related Research Articles

<span class="mw-page-title-main">Acoustics</span> Branch of physics involving mechanical waves

Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer. The application of acoustics is present in almost all aspects of modern society with the most obvious being the audio and noise control industries.

<span class="mw-page-title-main">Acoustical engineering</span> Branch of engineering dealing with sound and vibration

Acoustical engineering is the branch of engineering dealing with sound and vibration. It includes the application of acoustics, the science of sound and vibration, in technology. Acoustical engineers are typically concerned with the design, analysis and control of sound.

NASTRAN is a finite element analysis (FEA) program that was originally developed for NASA in the late 1960s under United States government funding for the aerospace industry. The MacNeal-Schwendler Corporation (MSC) was one of the principal and original developers of the publicly available NASTRAN code. NASTRAN source code is integrated in a number of different software packages, which are distributed by a range of companies.

<span class="mw-page-title-main">COMSOL Multiphysics</span> Physics and engineering software package

COMSOL Multiphysics is a finite element analysis, solver, and simulation software package for various physics and engineering applications, especially coupled phenomena and multiphysics. The software facilitates conventional physics-based user interfaces and coupled systems of partial differential equations (PDEs). COMSOL provides an IDE and unified workflow for electrical, mechanical, fluid, acoustics, and chemical applications.

MSC Software Corporation is an American simulation software technology company based in Newport Beach, California, that specializes in simulation software.

Computational aeroacoustics is a branch of aeroacoustics that aims to analyze the generation of noise by turbulent flows through numerical methods.

<span class="mw-page-title-main">NEi Nastran</span>

NEi Nastran was an engineering analysis and simulation software product of NEi Software. Based on NASA's Structural Analysis program NASTRAN, the software is a finite element analysis (FEA) solver used to generate solutions for linear and nonlinear stress, dynamics, and heat transfer characteristics of structures and mechanical components. NEi Nastran software is used with all major industry pre- and post-processors, including Femap, a product of Siemens PLM Software, and the in-house brands NEi Nastran in-CAD, NEi Fusion, and NEi Works for SolidWorks. This software was acquired by Autodesk in May 2014.

Statistical energy analysis (SEA) is a method for predicting the transmission of sound and vibration through complex structural acoustic systems. The method is particularly well suited for quick system level response predictions at the early design stage of a product, and for predicting responses at higher frequencies. In SEA a system is represented in terms of a number of coupled subsystems and a set of linear equations are derived that describe the input, storage, transmission and dissipation of energy within each subsystem. The parameters in the SEA equations are typically obtained by making certain statistical assumptions about the local dynamic properties of each subsystem (similar to assumptions made in room acoustics and statistical mechanics). These assumptions significantly simplify the analysis and make it possible to analyze the response of systems that are often too complex to analyze using other methods (such as finite element and boundary element methods).

<span class="mw-page-title-main">Mercedes Reaves</span> Puerto Rican electronics engineer

Mercedes Reaves is a Puerto Rican research engineer and scientist. She is responsible for the design of a viable full-scale solar sail and the development and testing of a scale model solar sail at NASA Langley Research Center in Virginia.

Femap is an engineering analysis program sold by Siemens Digital Industries Software that is used to build finite element models of complex engineering problems ("pre-processing") and view solution results ("post-processing"). It runs on Microsoft Windows and provides CAD import, modeling and meshing tools to create a finite element model, as well as postprocessing functionality that allows mechanical engineers to interpret analysis results. The finite element method allows engineers to virtually model components, assemblies, or systems to determine behavior under a given set of boundary conditions, and is typically used in the design process to reduce costly prototyping and testing, evaluate differing designs and materials, and for structural optimization to reduce weight.

Z88 is a software package for the finite element method (FEM) and topology optimization. A team led by Frank Rieg at the University of Bayreuth started development in 1985 and now the software is used by several universities, as well as small and medium-sized enterprises. Z88 is capable of calculating two and three dimensional element types with a linear approach. The software package contains several solvers and two post-processors and is available for Microsoft Windows, Mac OS X and Unix/Linux computers in 32-bit and 64-bit versions. Benchmark tests conducted in 2007 showed a performance on par with commercial software.

ADINA is a commercial engineering simulation software program that is developed and distributed worldwide by ADINA R & D, Inc. The company was founded in 1986 by Dr. Klaus-Jürgen Bathe, and is headquartered in Watertown, Massachusetts, United States. On April 7, 2022, Bentley Systems acquired ADINA R&D, Inc.

Structural acoustics is the study of the mechanical waves in structures and how they interact with and radiate into adjacent media. The field of structural acoustics is often referred to as vibroacoustics in Europe and Asia. People that work in the field of structural acoustics are known as structural acousticians. The field of structural acoustics can be closely related to a number of other fields of acoustics including noise, transduction, underwater acoustics, and physical acoustics.

FEMtools is a multi-functional, cross-platform and solver-independent family of CAE software programs providing analysis and scripting solutions for many different types of engineering simulation applications. The program is developed, supported and licensed by Dynamic Design Solutions ("DDS") NV, located in Leuven, Belgium.

Particle damping is the use of particles moving freely in a cavity to produce a damping effect.

Dynamical energy analysis (DEA) is a method for numerically modelling structure borne sound and vibration in complex structures. It is applicable in the mid-to-high frequency range and is in this regime computational more efficient than traditional deterministic approaches (such as finite element and boundary element methods). In comparison to conventional statistical approaches such as statistical energy analysis (SEA), DEA provides more structural details and is less problematic with respect to subsystem division. The DEA method predicts the flow of vibrational wave energy across complex structures in terms of (linear) transport equations. These equations are then discretized and solved on meshes.

Electromagnetically induced acoustic noise (and vibration), electromagnetically excited acoustic noise, or more commonly known as coil whine, is audible sound directly produced by materials vibrating under the excitation of electromagnetic forces. Some examples of this noise include the mains hum, hum of transformers, the whine of some rotating electric machines, or the buzz of fluorescent lamps. The hissing of high voltage transmission lines is due to corona discharge, not magnetism.

<span class="mw-page-title-main">Blade-vortex interaction</span>

A blade vortex interaction (BVI) is an unsteady phenomenon of three-dimensional nature, which occurs when a rotor blade passes within a close proximity of the shed tip vortices from a previous blade. The aerodynamic interactions represent an important topic of investigation in rotorcraft research field due to the adverse influence produced on rotor noise, particularly in low speed descending flight condition or maneuver, which generates high amplitude impulsive noise.

<span class="mw-page-title-main">Lyle Norman Long</span> Academic and computational scientist

Lyle Norman Long is an academic, and computational scientist. He is a Professor Emeritus of Computational Science, Mathematics, and Engineering at The Pennsylvania State University, and is most known for developing algorithms and software for mathematical models, including neural networks, and robotics. His research has been focused in the fields of computational science, computational neuroscience, cognitive robotics, parallel computing, and software engineering.

References

  1. "MSC acquires FFT, Actran". 6 September 2011.
  2. "Hexagon AB Set to Acquire MSC Software".
  3. Astley, R. J., Macaulay, G. J., & Coyette, J. P. (1994). Mapped wave envelope elements for acoustical radiation and scattering. Journal of Sound and Vibration, 170(1), 97-118.
  4. Astley, R. J., Macaulay, G. J., Coyette, J. P., & Cremers, L. (1998). Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. Part I. Formulation in the frequency domain. The Journal of the Acoustical Society of America, 103(1), 49-63.
  5. Astley, R. J., Coyette, J. P. (2001). The performance of spheroidal infinite elements. Int. J. Numer. Methods Engrg. 52 (12) 1379–1396.
  6. Astley, R. J., & Coyette, J. P. (2001). Conditioning of infinite element schemes for wave problems. Communications in Numerical Methods in Engineering, 17(1), 31-41.
  7. Coyette, J. P., & Van den Nieuwenhof, B. (2000). A conjugated infinite element method for half-space acoustic problems. The Journal of the Acoustical Society of America, 108(4), 1464-1473.
  8. Van den Nieuwenhof, B., & Coyette, J. P. (2001). Treatment of frequency-dependent admittance boundary conditions in transient acoustic finite/infinite-element models. The Journal of the Acoustical Society of America, 110(4), 1743-1751.
  9. "Acoustics Bulletin September-October 2017" (PDF). ioa.org.
  10. Zhou, Z., & Copiello, D. (2013). Simulation of Exhaust Line Noise Using FEM and TMM. Sound & Vibration, 11.
  11. Caro, S., Ploumhans, P., Brotz, F., Schrumpf, M., Mendonca, F., & Read, A. (2005). Aeroacoustic simulation of the noise radiated by an Helmholtz resonator placed in a duct. AIAA paper, 3067.
  12. Cabrol, M., Detandt, Y., Hartmann, M., & Mutzke, A. (2012, June). A comparison between the effects of turbulent and acoustic wall pressure fluctuations inside a car. In 18th AIAA/CEAS Aeroacoustic Conference (pp. 2012-2202).
  13. d'Udekem, D., Saitoh, M., Van den Nieuwenhof, B., & Yamamoto, T. (2011). Numerical Prediction of the Exhaust Noise Transmission to the Interior of a Trimmed Vehicle by Using the Finite/Infinite Element Method (No. 2011-01-1710). SAE Technical Paper.
  14. Brandstetter, M., Dutrion, C., Antoniadis, P.D., Mordillat, P. & Van den Nieuwenhof, B. (2018). SEA Modelling and Transfer Path Analysis of an Extensive RENAULT B segment SUV Finite Element Model. Aachen Acoustics Colloquium 2018, Aachen, Germany.
  15. Lidoine, S., & Caruelle, B. (2005, July). Fan noise radiation from intake: Comparisons between FEM predictions and fan rig test measurements with flare. In 12th International Congress on Sound and Vibration.
  16. Achunche, I., Astley, J., Sugimoto, R., & Kempton, A. (2009). Prediction of forward fan noise propagation and radiation from intakes. AIAA paper, 3239, 2009.
  17. Schuster, B., Lieber, L., & Vavalle, A. (2010, June). Optimization of a seamless inlet liner using an empirically validated prediction method. In 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden.
  18. Simulation Helps Airbus Optimize Acoustic Liners and Reduce Noise
  19. Marotta, T. R., Lieber, L. S., & Dougherty, R. P. Validation of Beamforming Analysis Methodology with Synthesized Acoustic Time History Data: Sub-Scale Fan Rig System.
  20. Mosson, A., Binet D., Caprile J. (2014) Simulation of Installation Effects of Aircraft Engine Rear Fan Noise with ACTRAN/DGM. In 20th AIAA/CEAS Aeroacoustics Conference.
  21. Actran Student Edition
  22. www.fft.be
  23. T. El-Dsoki, MSC Software, J. Beuse, X. Robin, "Synergy between multi-body dynamics and acoustic simulation – Application to gear noise of a wind turbine" DAGA 2015
  24. Marriott, D., Ohtomo, T., and Wako, T., "Complete Multi-Discipline Simulation for Sloshing Noise," SAE Technical Paper 2015-01-0672, 2015, doi:10.4271/2015-01-0672.